Node.js v20.11.1 文档


加密#

¥Crypto

稳定性: 2 - 稳定的

¥Stability: 2 - Stable

源代码: lib/crypto.js

node:crypto 模块提供了加密功能,其中包括了用于 OpenSSL 散列、HMAC、加密、解密、签名、以及验证的函数的一整套封装。

¥The node:crypto module provides cryptographic functionality that includes a set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.

const { createHmac } = await import('node:crypto');

const secret = 'abcdefg';
const hash = createHmac('sha256', secret)
               .update('I love cupcakes')
               .digest('hex');
console.log(hash);
// Prints:
//   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658econst { createHmac } = require('node:crypto');

const secret = 'abcdefg';
const hash = createHmac('sha256', secret)
               .update('I love cupcakes')
               .digest('hex');
console.log(hash);
// Prints:
//   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e

确定加密支持是否不可用#

¥Determining if crypto support is unavailable

可以在不支持 node:crypto 模块的情况下构建 Node.js。在这种情况下,尝试 import crypto 或调用 require('node:crypto') 将导致抛出错误。

¥It is possible for Node.js to be built without including support for the node:crypto module. In such cases, attempting to import from crypto or calling require('node:crypto') will result in an error being thrown.

使用 CommonJS 时,可以使用 try/catch 捕获抛出的错误:

¥When using CommonJS, the error thrown can be caught using try/catch:

let crypto;
try {
  crypto = require('node:crypto');
} catch (err) {
  console.error('crypto support is disabled!');
} 

当使用词法 ESM import 关键字时,只有在尝试加载模块(例如,使用预加载模块)之前注册了 process.on('uncaughtException') 的处理程序时,才能捕获错误。

¥When using the lexical ESM import keyword, the error can only be caught if a handler for process.on('uncaughtException') is registered before any attempt to load the module is made (using, for instance, a preload module).

使用 ESM 时,如果有可能在未启用加密支持的 Node.js 版本上运行代码,则考虑使用 import() 函数而不是 import 关键字:

¥When using ESM, if there is a chance that the code may be run on a build of Node.js where crypto support is not enabled, consider using the import() function instead of the lexical import keyword:

let crypto;
try {
  crypto = await import('node:crypto');
} catch (err) {
  console.error('crypto support is disabled!');
} 

类:Certificate#

¥Class: Certificate

SPKAC 是最初由 Netscape 实现的一种 Certificate Signing Request 机制,被正式指定为 HTML5 的 keygen 元素的一部分。

¥SPKAC is a Certificate Signing Request mechanism originally implemented by Netscape and was specified formally as part of HTML5's keygen element.

<keygen> 已弃用,因为 HTML 5.2 新项目不应再使用此元素。

¥<keygen> is deprecated since HTML 5.2 and new projects should not use this element anymore.

node:crypto 模块提供了用于处理 SPKAC 数据的 Certificate 类。最常见的用法是处理由 HTML5 <keygen> 元素生成的输出。Node.js 在内部使用 OpenSSL 的 SPKAC 实现

¥The node:crypto module provides the Certificate class for working with SPKAC data. The most common usage is handling output generated by the HTML5 <keygen> element. Node.js uses OpenSSL's SPKAC implementation internally.

静态方法:Certificate.exportChallenge(spkac[, encoding])#

¥Static method: Certificate.exportChallenge(spkac[, encoding])

const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
const challenge = Certificate.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 stringconst { Certificate } = require('node:crypto');
const spkac = getSpkacSomehow();
const challenge = Certificate.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string

静态方法:Certificate.exportPublicKey(spkac[, encoding])#

¥Static method: Certificate.exportPublicKey(spkac[, encoding])

const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
const publicKey = Certificate.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>const { Certificate } = require('node:crypto');
const spkac = getSpkacSomehow();
const publicKey = Certificate.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>

静态方法:Certificate.verifySpkac(spkac[, encoding])#

¥Static method: Certificate.verifySpkac(spkac[, encoding])

import { Buffer } from 'node:buffer';
const { Certificate } = await import('node:crypto');

const spkac = getSpkacSomehow();
console.log(Certificate.verifySpkac(Buffer.from(spkac)));
// Prints: true or falseconst { Buffer } = require('node:buffer');
const { Certificate } = require('node:crypto');

const spkac = getSpkacSomehow();
console.log(Certificate.verifySpkac(Buffer.from(spkac)));
// Prints: true or false

旧版 API#

¥Legacy API

稳定性: 0 - 已弃用

¥Stability: 0 - Deprecated

作为旧版接口,可以创建 crypto.Certificate 类的新实例,如下面的示例所示。

¥As a legacy interface, it is possible to create new instances of the crypto.Certificate class as illustrated in the examples below.

new crypto.Certificate()#

可以使用 new 关键字或通过调用 crypto.Certificate() 作为函数来创建 Certificate 类的实例:

¥Instances of the Certificate class can be created using the new keyword or by calling crypto.Certificate() as a function:

const { Certificate } = await import('node:crypto');

const cert1 = new Certificate();
const cert2 = Certificate();const { Certificate } = require('node:crypto');

const cert1 = new Certificate();
const cert2 = Certificate();

certificate.exportChallenge(spkac[, encoding])#
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 stringconst { Certificate } = require('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string

certificate.exportPublicKey(spkac[, encoding])#
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>const { Certificate } = require('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>

certificate.verifySpkac(spkac[, encoding])#
import { Buffer } from 'node:buffer';
const { Certificate } = await import('node:crypto');

const cert = Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or falseconst { Buffer } = require('node:buffer');
const { Certificate } = require('node:crypto');

const cert = Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or false

类:Cipher#

¥Class: Cipher

Cipher 类的实例用于加密数据。可以通过以下两种方式之一使用该类:

¥Instances of the Cipher class are used to encrypt data. The class can be used in one of two ways:

  • 作为可读可写的 ,写入未加密的普通数据以在可读端生成加密数据,或者

    ¥As a stream that is both readable and writable, where plain unencrypted data is written to produce encrypted data on the readable side, or

  • 使用 cipher.update()cipher.final() 方法生成加密的数据。

    ¥Using the cipher.update() and cipher.final() methods to produce the encrypted data.

crypto.createCipher()crypto.createCipheriv() 方法用于创建 Cipher 实例。Cipher 对象不能直接使用 new 关键字创建。

¥The crypto.createCipher() or crypto.createCipheriv() methods are used to create Cipher instances. Cipher objects are not to be created directly using the new keyword.

示例:使用 Cipher 对象作为流:

¥Example: Using Cipher objects as streams:

const {
  scrypt,
  randomFill,
  createCipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    // Once we have the key and iv, we can create and use the cipher...
    const cipher = createCipheriv(algorithm, key, iv);

    let encrypted = '';
    cipher.setEncoding('hex');

    cipher.on('data', (chunk) => encrypted += chunk);
    cipher.on('end', () => console.log(encrypted));

    cipher.write('some clear text data');
    cipher.end();
  });
});const {
  scrypt,
  randomFill,
  createCipheriv,
} = require('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    // Once we have the key and iv, we can create and use the cipher...
    const cipher = createCipheriv(algorithm, key, iv);

    let encrypted = '';
    cipher.setEncoding('hex');

    cipher.on('data', (chunk) => encrypted += chunk);
    cipher.on('end', () => console.log(encrypted));

    cipher.write('some clear text data');
    cipher.end();
  });
});

示例:使用 Cipher 和管道流:

¥Example: Using Cipher and piped streams:

import {
  createReadStream,
  createWriteStream,
} from 'node:fs';

import {
  pipeline,
} from 'node:stream';

const {
  scrypt,
  randomFill,
  createCipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    const cipher = createCipheriv(algorithm, key, iv);

    const input = createReadStream('test.js');
    const output = createWriteStream('test.enc');

    pipeline(input, cipher, output, (err) => {
      if (err) throw err;
    });
  });
});const {
  createReadStream,
  createWriteStream,
} = require('node:fs');

const {
  pipeline,
} = require('node:stream');

const {
  scrypt,
  randomFill,
  createCipheriv,
} = require('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    const cipher = createCipheriv(algorithm, key, iv);

    const input = createReadStream('test.js');
    const output = createWriteStream('test.enc');

    pipeline(input, cipher, output, (err) => {
      if (err) throw err;
    });
  });
});

示例:使用 cipher.update()cipher.final() 方法:

¥Example: Using the cipher.update() and cipher.final() methods:

const {
  scrypt,
  randomFill,
  createCipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    const cipher = createCipheriv(algorithm, key, iv);

    let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
    encrypted += cipher.final('hex');
    console.log(encrypted);
  });
});const {
  scrypt,
  randomFill,
  createCipheriv,
} = require('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    const cipher = createCipheriv(algorithm, key, iv);

    let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
    encrypted += cipher.final('hex');
    console.log(encrypted);
  });
});

cipher.final([outputEncoding])#

  • outputEncoding <string> 返回值的 字符编码

    ¥outputEncoding <string> The encoding of the return value.

  • 返回:<Buffer> | <string> 任何剩余的加密内容。如果指定了 outputEncoding,则返回字符串。如果未提供 outputEncoding,则返回 Buffer

    ¥Returns: <Buffer> | <string> Any remaining enciphered contents. If outputEncoding is specified, a string is returned. If an outputEncoding is not provided, a Buffer is returned.

一旦调用了 cipher.final() 方法,则 Cipher 对象就不能再用于加密数据。多次尝试调用 cipher.final() 将导致抛出错误。

¥Once the cipher.final() method has been called, the Cipher object can no longer be used to encrypt data. Attempts to call cipher.final() more than once will result in an error being thrown.

cipher.getAuthTag()#

  • 返回:<Buffer> 当使用经过身份验证的加密模式(目前支持 GCMCCMOCBchacha20-poly1305)时,cipher.getAuthTag() 方法返回一个 Buffer,其中包含根据给定数据计算出的身份验证标记。

    ¥Returns: <Buffer> When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the cipher.getAuthTag() method returns a Buffer containing the authentication tag that has been computed from the given data.

只有在使用 cipher.final() 方法完成加密后才应调用 cipher.getAuthTag() 方法。

¥The cipher.getAuthTag() method should only be called after encryption has been completed using the cipher.final() method.

如果在创建 cipher 实例时设置了 authTagLength 选项,则此函数将准确返回 authTagLength 个字节。

¥If the authTagLength option was set during the cipher instance's creation, this function will return exactly authTagLength bytes.

cipher.setAAD(buffer[, options])#

当使用经过身份验证的加密模式(当前支持 GCMCCMOCBchacha20-poly1305)时,cipher.setAAD() 方法设置用于附加身份验证数据 (AAD) 输入参数的值。

¥When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the cipher.setAAD() method sets the value used for the additional authenticated data (AAD) input parameter.

plaintextLength 选项对于 GCMOCB 是可选的。使用 CCM 时,必须指定 plaintextLength 选项,其值必须与明文的字节长度匹配。参见 CCM 模式

¥The plaintextLength option is optional for GCM and OCB. When using CCM, the plaintextLength option must be specified and its value must match the length of the plaintext in bytes. See CCM mode.

cipher.setAAD() 方法必须在 cipher.update() 之前调用。

¥The cipher.setAAD() method must be called before cipher.update().

cipher.setAutoPadding([autoPadding])#

当使用块加密算法时,Cipher 类会自动向输入数据添加填充到适当的块大小。要禁用默认填充调用 cipher.setAutoPadding(false)

¥When using block encryption algorithms, the Cipher class will automatically add padding to the input data to the appropriate block size. To disable the default padding call cipher.setAutoPadding(false).

autoPaddingfalse 时,整个输入数据的长度必须是密码块大小的倍数,否则 cipher.final() 将抛出错误。禁用自动填充对于非标准填充很有用,例如使用 0x0 而不是 PKCS 填充。

¥When autoPadding is false, the length of the entire input data must be a multiple of the cipher's block size or cipher.final() will throw an error. Disabling automatic padding is useful for non-standard padding, for instance using 0x0 instead of PKCS padding.

cipher.setAutoPadding() 方法必须在 cipher.final() 之前调用。

¥The cipher.setAutoPadding() method must be called before cipher.final().

cipher.update(data[, inputEncoding][, outputEncoding])#

使用 data 更新密码。如果给定了 inputEncoding 参数,则 data 参数是使用指定编码的字符串。如果未给定 inputEncoding 参数,则 data 必须是 BufferTypedArrayDataView。如果 dataBufferTypedArrayDataView,则忽略 inputEncoding

¥Updates the cipher with data. If the inputEncoding argument is given, the data argument is a string using the specified encoding. If the inputEncoding argument is not given, data must be a Buffer, TypedArray, or DataView. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

outputEncoding 指定加密数据的输出格式。如果指定了 outputEncoding,则返回使用指定编码的字符串。如果未提供 outputEncoding,则返回 Buffer

¥The outputEncoding specifies the output format of the enciphered data. If the outputEncoding is specified, a string using the specified encoding is returned. If no outputEncoding is provided, a Buffer is returned.

可以使用新数据多次调用 cipher.update() 方法,直到调用 cipher.final()。在 cipher.final() 之后调用 cipher.update() 将导致抛出错误。

¥The cipher.update() method can be called multiple times with new data until cipher.final() is called. Calling cipher.update() after cipher.final() will result in an error being thrown.

类:Decipher#

¥Class: Decipher

Decipher 类的实例用于解密数据。可以通过以下两种方式之一使用该类:

¥Instances of the Decipher class are used to decrypt data. The class can be used in one of two ways:

  • 作为可读可写的 ,写入普通加密数据以在可读端生成未加密数据,或者

    ¥As a stream that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or

  • 使用 decipher.update()decipher.final() 方法生成未加密的数据。

    ¥Using the decipher.update() and decipher.final() methods to produce the unencrypted data.

crypto.createDecipher()crypto.createDecipheriv() 方法用于创建 Decipher 实例。Decipher 对象不能直接使用 new 关键字创建。

¥The crypto.createDecipher() or crypto.createDecipheriv() methods are used to create Decipher instances. Decipher objects are not to be created directly using the new keyword.

示例:使用 Decipher 对象作为流:

¥Example: Using Decipher objects as streams:

import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Key length is dependent on the algorithm. In this case for aes192, it is
// 24 bytes (192 bits).
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

let decrypted = '';
decipher.on('readable', () => {
  let chunk;
  while (null !== (chunk = decipher.read())) {
    decrypted += chunk.toString('utf8');
  }
});
decipher.on('end', () => {
  console.log(decrypted);
  // Prints: some clear text data
});

// Encrypted with same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
decipher.write(encrypted, 'hex');
decipher.end();const {
  scryptSync,
  createDecipheriv,
} = require('node:crypto');
const { Buffer } = require('node:buffer');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Key length is dependent on the algorithm. In this case for aes192, it is
// 24 bytes (192 bits).
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

let decrypted = '';
decipher.on('readable', () => {
  let chunk;
  while (null !== (chunk = decipher.read())) {
    decrypted += chunk.toString('utf8');
  }
});
decipher.on('end', () => {
  console.log(decrypted);
  // Prints: some clear text data
});

// Encrypted with same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
decipher.write(encrypted, 'hex');
decipher.end();

示例:使用 Decipher 和管道流:

¥Example: Using Decipher and piped streams:

import {
  createReadStream,
  createWriteStream,
} from 'node:fs';
import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

const input = createReadStream('test.enc');
const output = createWriteStream('test.js');

input.pipe(decipher).pipe(output);const {
  createReadStream,
  createWriteStream,
} = require('node:fs');
const {
  scryptSync,
  createDecipheriv,
} = require('node:crypto');
const { Buffer } = require('node:buffer');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

const input = createReadStream('test.enc');
const output = createWriteStream('test.js');

input.pipe(decipher).pipe(output);

示例:使用 decipher.update()decipher.final() 方法:

¥Example: Using the decipher.update() and decipher.final() methods:

import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

// Encrypted using same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text dataconst {
  scryptSync,
  createDecipheriv,
} = require('node:crypto');
const { Buffer } = require('node:buffer');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

// Encrypted using same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data

decipher.final([outputEncoding])#

  • outputEncoding <string> 返回值的 字符编码

    ¥outputEncoding <string> The encoding of the return value.

  • 返回:<Buffer> | <string> 任何剩余的解密内容。如果指定了 outputEncoding,则返回字符串。如果未提供 outputEncoding,则返回 Buffer

    ¥Returns: <Buffer> | <string> Any remaining deciphered contents. If outputEncoding is specified, a string is returned. If an outputEncoding is not provided, a Buffer is returned.

一旦调用了 decipher.final() 方法,就不能再使用 Decipher 对象来解密数据。多次尝试调用 decipher.final() 将导致抛出错误。

¥Once the decipher.final() method has been called, the Decipher object can no longer be used to decrypt data. Attempts to call decipher.final() more than once will result in an error being thrown.

decipher.setAAD(buffer[, options])#

当使用经过身份验证的加密模式(当前支持 GCMCCMOCBchacha20-poly1305)时,decipher.setAAD() 方法设置用于附加身份验证数据 (AAD) 输入参数的值。

¥When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the decipher.setAAD() method sets the value used for the additional authenticated data (AAD) input parameter.

options 参数对于 GCM 是可选的。使用 CCM 时,必须指定 plaintextLength 选项,其值必须与密文的字节长度匹配。参见 CCM 模式

¥The options argument is optional for GCM. When using CCM, the plaintextLength option must be specified and its value must match the length of the ciphertext in bytes. See CCM mode.

decipher.setAAD() 方法必须在 decipher.update() 之前调用。

¥The decipher.setAAD() method must be called before decipher.update().

将字符串作为 buffer 传递时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing a string as the buffer, please consider caveats when using strings as inputs to cryptographic APIs.

decipher.setAuthTag(buffer[, encoding])#

使用鉴权加密方式时(目前支持 GCMCCMOCBchacha20-poly1305),使用 decipher.setAuthTag() 方式传入接收到的鉴权标签。如果没有提供标签,或者密文被篡改,则抛出 decipher.final(),表示由于认证失败,密文应该被丢弃。如果标签长度根据 NIST SP 800-38D 无效或与 authTagLength 选项的值不匹配,decipher.setAuthTag() 将抛出错误。

¥When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the decipher.setAuthTag() method is used to pass in the received authentication tag. If no tag is provided, or if the cipher text has been tampered with, decipher.final() will throw, indicating that the cipher text should be discarded due to failed authentication. If the tag length is invalid according to NIST SP 800-38D or does not match the value of the authTagLength option, decipher.setAuthTag() will throw an error.

CCM 模式必须在 decipher.update() 之前调用 decipher.setAuthTag() 方法,对于 GCMOCB 模式以及 chacha20-poly1305,必须在 decipher.final() 之前调用。decipher.setAuthTag() 只能被调用一次。

¥The decipher.setAuthTag() method must be called before decipher.update() for CCM mode or before decipher.final() for GCM and OCB modes and chacha20-poly1305. decipher.setAuthTag() can only be called once.

传递字符串作为身份验证标记时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing a string as the authentication tag, please consider caveats when using strings as inputs to cryptographic APIs.

decipher.setAutoPadding([autoPadding])#

当数据在没有标准块填充的情况下加密时,调用 decipher.setAutoPadding(false) 将禁用自动填充以防止 decipher.final() 检查和删除填充。

¥When data has been encrypted without standard block padding, calling decipher.setAutoPadding(false) will disable automatic padding to prevent decipher.final() from checking for and removing padding.

仅当输入数据的长度是密码块大小的倍数时,关闭自动填充才会起作用。

¥Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.

decipher.setAutoPadding() 方法必须在 decipher.final() 之前调用。

¥The decipher.setAutoPadding() method must be called before decipher.final().

decipher.update(data[, inputEncoding][, outputEncoding])#

data 更新解密。如果给定了 inputEncoding 参数,则 data 参数是使用指定编码的字符串。如果未给定 inputEncoding 参数,则 data 必须是 Buffer。如果 dataBuffer,则忽略 inputEncoding

¥Updates the decipher with data. If the inputEncoding argument is given, the data argument is a string using the specified encoding. If the inputEncoding argument is not given, data must be a Buffer. If data is a Buffer then inputEncoding is ignored.

outputEncoding 指定加密数据的输出格式。如果指定了 outputEncoding,则返回使用指定编码的字符串。如果未提供 outputEncoding,则返回 Buffer

¥The outputEncoding specifies the output format of the enciphered data. If the outputEncoding is specified, a string using the specified encoding is returned. If no outputEncoding is provided, a Buffer is returned.

可以使用新数据多次调用 decipher.update() 方法,直到调用 decipher.final()。在 decipher.final() 之后调用 decipher.update() 将导致抛出错误。

¥The decipher.update() method can be called multiple times with new data until decipher.final() is called. Calling decipher.update() after decipher.final() will result in an error being thrown.

类:DiffieHellman#

¥Class: DiffieHellman

DiffieHellman 类是用于创建 Diffie-Hellman 密钥交换的实用工具。

¥The DiffieHellman class is a utility for creating Diffie-Hellman key exchanges.

可以使用 crypto.createDiffieHellman() 函数创建 DiffieHellman 类的实例。

¥Instances of the DiffieHellman class can be created using the crypto.createDiffieHellman() function.

import assert from 'node:assert';

const {
  createDiffieHellman,
} = await import('node:crypto');

// Generate Alice's keys...
const alice = createDiffieHellman(2048);
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

// OK
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));const assert = require('node:assert');

const {
  createDiffieHellman,
} = require('node:crypto');

// Generate Alice's keys...
const alice = createDiffieHellman(2048);
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

// OK
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));

diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])#

使用 otherPublicKey 作为对方的公钥计算共享密钥,并返回计算出的共享密钥。使用指定的 inputEncoding 解释提供的密钥,使用指定的 outputEncoding 对密钥进行编码。如果未提供 inputEncoding,则 otherPublicKey 应为 BufferTypedArrayDataView

¥Computes the shared secret using otherPublicKey as the other party's public key and returns the computed shared secret. The supplied key is interpreted using the specified inputEncoding, and secret is encoded using specified outputEncoding. If the inputEncoding is not provided, otherPublicKey is expected to be a Buffer, TypedArray, or DataView.

如果给定 outputEncoding,则返回一个字符串;否则,返回 Buffer

¥If outputEncoding is given a string is returned; otherwise, a Buffer is returned.

diffieHellman.generateKeys([encoding])#

生成私有和公共 Diffie-Hellman 密钥值(除非它们已生成或计算),并返回指定 encoding 中的公共密钥。此密钥应转让给另一方。如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥Generates private and public Diffie-Hellman key values unless they have been generated or computed already, and returns the public key in the specified encoding. This key should be transferred to the other party. If encoding is provided a string is returned; otherwise a Buffer is returned.

该函数是 DH_generate_key() 的薄封装。特别是,一旦生成或设置了私钥,调用此函数只会更新公钥,但不会生成新的私钥。

¥This function is a thin wrapper around DH_generate_key(). In particular, once a private key has been generated or set, calling this function only updates the public key but does not generate a new private key.

diffieHellman.getGenerator([encoding])#

返回指定 encoding 中的 Diffie-Hellman 生成器。如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥Returns the Diffie-Hellman generator in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getPrime([encoding])#

返回指定 encoding 中的 Diffie-Hellman 素数。如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥Returns the Diffie-Hellman prime in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getPrivateKey([encoding])#

返回指定 encoding 中的 Diffie-Hellman 私钥。如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥Returns the Diffie-Hellman private key in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.getPublicKey([encoding])#

返回指定 encoding 中的 Diffie-Hellman 公钥。如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥Returns the Diffie-Hellman public key in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

diffieHellman.setPrivateKey(privateKey[, encoding])#

设置 Diffie-Hellman 私钥。如果提供了 encoding 参数,则 privateKey 应该是字符串。如果未提供 encoding,则 privateKey 应为 BufferTypedArrayDataView

¥Sets the Diffie-Hellman private key. If the encoding argument is provided, privateKey is expected to be a string. If no encoding is provided, privateKey is expected to be a Buffer, TypedArray, or DataView.

此函数不会自动计算关联的公钥。diffieHellman.setPublicKey()diffieHellman.generateKeys() 均可用于手动提供公钥或自动导出公钥。

¥This function does not automatically compute the associated public key. Either diffieHellman.setPublicKey() or diffieHellman.generateKeys() can be used to manually provide the public key or to automatically derive it.

diffieHellman.setPublicKey(publicKey[, encoding])#

设置 Diffie-Hellman 公钥。如果提供了 encoding 参数,则 publicKey 应该是字符串。如果未提供 encoding,则 publicKey 应为 BufferTypedArrayDataView

¥Sets the Diffie-Hellman public key. If the encoding argument is provided, publicKey is expected to be a string. If no encoding is provided, publicKey is expected to be a Buffer, TypedArray, or DataView.

diffieHellman.verifyError#

包含在 DiffieHellman 对象初始化期间执行的检查所产生的任何警告和/或错误的位字段。

¥A bit field containing any warnings and/or errors resulting from a check performed during initialization of the DiffieHellman object.

以下值对此属性有效(如 node:constants 模块中所定义):

¥The following values are valid for this property (as defined in node:constants module):

  • DH_CHECK_P_NOT_SAFE_PRIME

  • DH_CHECK_P_NOT_PRIME

  • DH_UNABLE_TO_CHECK_GENERATOR

  • DH_NOT_SUITABLE_GENERATOR

类:DiffieHellmanGroup#

¥Class: DiffieHellmanGroup

DiffieHellmanGroup 类以著名的 modp 组为参数。它的工作原理与 DiffieHellman 相同,不同之处在于它不允许在创建后更改其密钥。换句话说,它没有实现 setPublicKey()setPrivateKey() 方法。

¥The DiffieHellmanGroup class takes a well-known modp group as its argument. It works the same as DiffieHellman, except that it does not allow changing its keys after creation. In other words, it does not implement setPublicKey() or setPrivateKey() methods.

const { createDiffieHellmanGroup } = await import('node:crypto');
const dh = createDiffieHellmanGroup('modp16');const { createDiffieHellmanGroup } = require('node:crypto');
const dh = createDiffieHellmanGroup('modp16');

支持以下组:

¥The following groups are supported:

  • 'modp14'(2048 位,RFC 3526 第 3 节)

    ¥'modp14' (2048 bits, RFC 3526 Section 3)

  • 'modp15'(3072 位,RFC 3526 第 4 节)

    ¥'modp15' (3072 bits, RFC 3526 Section 4)

  • 'modp16'(4096 位,RFC 3526 第 5 节)

    ¥'modp16' (4096 bits, RFC 3526 Section 5)

  • 'modp17'(6144 位,RFC 3526 第 6 节)

    ¥'modp17' (6144 bits, RFC 3526 Section 6)

  • 'modp18'(8192 位,RFC 3526 第 7 节)

    ¥'modp18' (8192 bits, RFC 3526 Section 7)

以下组仍受支持但已弃用(请参阅 注意事项):

¥The following groups are still supported but deprecated (see Caveats):

  • 'modp1'(768 位,RFC 2409 第 6.1 节)

    ¥'modp1' (768 bits, RFC 2409 Section 6.1)

  • 'modp2'(1024 位,RFC 2409 第 6.2 节)

    ¥'modp2' (1024 bits, RFC 2409 Section 6.2)

  • 'modp5'(1536 位,RFC 3526 第 2 部分)

    ¥'modp5' (1536 bits, RFC 3526 Section 2)

这些已弃用的组可能会在 Node.js 的未来版本中被删除。

¥These deprecated groups might be removed in future versions of Node.js.

类:ECDH#

¥Class: ECDH

ECDH 类是用于创建椭圆曲线 Diffie-Hellman (ECDH) 密钥交换的实用工具。

¥The ECDH class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) key exchanges.

可以使用 crypto.createECDH() 函数创建 ECDH 类的实例。

¥Instances of the ECDH class can be created using the crypto.createECDH() function.

import assert from 'node:assert';

const {
  createECDH,
} = await import('node:crypto');

// Generate Alice's keys...
const alice = createECDH('secp521r1');
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = createECDH('secp521r1');
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
// OKconst assert = require('node:assert');

const {
  createECDH,
} = require('node:crypto');

// Generate Alice's keys...
const alice = createECDH('secp521r1');
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = createECDH('secp521r1');
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
// OK

静态方法:ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])#

¥Static method: ECDH.convertKey(key, curve[, inputEncoding[, outputEncoding[, format]]])

keycurve 指定的 EC Diffie-Hellman 公钥转换为 format 指定的格式。format 参数指定点编码,可以是 'compressed''uncompressed''hybrid'。提供的密钥使用指定的 inputEncoding 进行解释,返回的密钥使用指定的 outputEncoding 进行编码。

¥Converts the EC Diffie-Hellman public key specified by key and curve to the format specified by format. The format argument specifies point encoding and can be 'compressed', 'uncompressed' or 'hybrid'. The supplied key is interpreted using the specified inputEncoding, and the returned key is encoded using the specified outputEncoding.

使用 crypto.getCurves() 获取可用曲线名称的列表。在最近的 OpenSSL 版本中,openssl ecparam -list_curves 还将显示每个可用椭圆曲线的名称和描述。

¥Use crypto.getCurves() to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves will also display the name and description of each available elliptic curve.

如果未指定 format,该点将以 'uncompressed' 格式返回。

¥If format is not specified the point will be returned in 'uncompressed' format.

如果未提供 inputEncoding,则 key 应为 BufferTypedArrayDataView

¥If the inputEncoding is not provided, key is expected to be a Buffer, TypedArray, or DataView.

示例(解压缩密钥):

¥Example (uncompressing a key):

const {
  createECDH,
  ECDH,
} = await import('node:crypto');

const ecdh = createECDH('secp256k1');
ecdh.generateKeys();

const compressedKey = ecdh.getPublicKey('hex', 'compressed');

const uncompressedKey = ECDH.convertKey(compressedKey,
                                        'secp256k1',
                                        'hex',
                                        'hex',
                                        'uncompressed');

// The converted key and the uncompressed public key should be the same
console.log(uncompressedKey === ecdh.getPublicKey('hex'));const {
  createECDH,
  ECDH,
} = require('node:crypto');

const ecdh = createECDH('secp256k1');
ecdh.generateKeys();

const compressedKey = ecdh.getPublicKey('hex', 'compressed');

const uncompressedKey = ECDH.convertKey(compressedKey,
                                        'secp256k1',
                                        'hex',
                                        'hex',
                                        'uncompressed');

// The converted key and the uncompressed public key should be the same
console.log(uncompressedKey === ecdh.getPublicKey('hex'));

ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding])#

使用 otherPublicKey 作为对方的公钥计算共享密钥,并返回计算出的共享密钥。提供的密钥使用指定的 inputEncoding 进行解释,返回的密钥使用指定的 outputEncoding 进行编码。如果未提供 inputEncoding,则 otherPublicKey 应为 BufferTypedArrayDataView

¥Computes the shared secret using otherPublicKey as the other party's public key and returns the computed shared secret. The supplied key is interpreted using specified inputEncoding, and the returned secret is encoded using the specified outputEncoding. If the inputEncoding is not provided, otherPublicKey is expected to be a Buffer, TypedArray, or DataView.

如果给定 outputEncoding,将返回一个字符串;否则返回 Buffer

¥If outputEncoding is given a string will be returned; otherwise a Buffer is returned.

otherPublicKey 位于椭圆曲线之外时,ecdh.computeSecret 将抛出 ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY 错误。由于 otherPublicKey 通常由远程用户通过不安全的网络提供,因此请务必相应地处理此异常。

¥ecdh.computeSecret will throw an ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY error when otherPublicKey lies outside of the elliptic curve. Since otherPublicKey is usually supplied from a remote user over an insecure network, be sure to handle this exception accordingly.

ecdh.generateKeys([encoding[, format]])#

生成私有和公共 EC Diffie-Hellman 密钥值,并返回指定 formatencoding 中的公钥。此密钥应转让给另一方。

¥Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified format and encoding. This key should be transferred to the other party.

format 参数指定点编码,可以是 'compressed''uncompressed'。如果未指定 format,则该点将以 'uncompressed' 格式返回。

¥The format argument specifies point encoding and can be 'compressed' or 'uncompressed'. If format is not specified, the point will be returned in 'uncompressed' format.

如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥If encoding is provided a string is returned; otherwise a Buffer is returned.

ecdh.getPrivateKey([encoding])#

如果指定了 encoding,则返回一个字符串;否则返回 Buffer

¥If encoding is specified, a string is returned; otherwise a Buffer is returned.

ecdh.getPublicKey([encoding][, format])#

format 参数指定点编码,可以是 'compressed''uncompressed'。如果未指定 format,该点将以 'uncompressed' 格式返回。

¥The format argument specifies point encoding and can be 'compressed' or 'uncompressed'. If format is not specified the point will be returned in 'uncompressed' format.

如果指定了 encoding,则返回一个字符串;否则返回 Buffer

¥If encoding is specified, a string is returned; otherwise a Buffer is returned.

ecdh.setPrivateKey(privateKey[, encoding])#

设置 EC Diffie-Hellman 私钥。如果提供了 encoding,则 privateKey 应该是一个字符串;否则 privateKey 应为 BufferTypedArrayDataView

¥Sets the EC Diffie-Hellman private key. If encoding is provided, privateKey is expected to be a string; otherwise privateKey is expected to be a Buffer, TypedArray, or DataView.

如果 privateKey 对于创建 ECDH 对象时指定的曲线无效,则会引发错误。在设置私钥时,相关的公共点(密钥)也会生成并设置在 ECDH 对象中。

¥If privateKey is not valid for the curve specified when the ECDH object was created, an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the ECDH object.

ecdh.setPublicKey(publicKey[, encoding])#

稳定性: 0 - 已弃用

¥Stability: 0 - Deprecated

设置 EC Diffie-Hellman 公钥。如果提供了 encoding,则 publicKey 应该是一个字符串;否则应为 BufferTypedArrayDataView

¥Sets the EC Diffie-Hellman public key. If encoding is provided publicKey is expected to be a string; otherwise a Buffer, TypedArray, or DataView is expected.

通常没有理由调用这个方法,因为 ECDH 只需要一个私钥和对方的公钥来计算共享秘密。通常会调用 ecdh.generateKeys()ecdh.setPrivateKey()ecdh.setPrivateKey() 方法尝试生成与正在设置的私钥相关联的公共点/密钥。

¥There is not normally a reason to call this method because ECDH only requires a private key and the other party's public key to compute the shared secret. Typically either ecdh.generateKeys() or ecdh.setPrivateKey() will be called. The ecdh.setPrivateKey() method attempts to generate the public point/key associated with the private key being set.

示例(获取共享密钥):

¥Example (obtaining a shared secret):

const {
  createECDH,
  createHash,
} = await import('node:crypto');

const alice = createECDH('secp256k1');
const bob = createECDH('secp256k1');

// This is a shortcut way of specifying one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
  createHash('sha256').update('alice', 'utf8').digest(),
);

// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);const {
  createECDH,
  createHash,
} = require('node:crypto');

const alice = createECDH('secp256k1');
const bob = createECDH('secp256k1');

// This is a shortcut way of specifying one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
  createHash('sha256').update('alice', 'utf8').digest(),
);

// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);

类:Hash#

¥Class: Hash

Hash 类是用于创建数据的哈希摘要的实用工具。它可以通过以下两种方式之一使用:

¥The Hash class is a utility for creating hash digests of data. It can be used in one of two ways:

  • 作为可读可写的 ,写入数据以在可读端生成计算的哈希摘要,或者

    ¥As a stream that is both readable and writable, where data is written to produce a computed hash digest on the readable side, or

  • 使用 hash.update()hash.digest() 方法生成计算的哈希。

    ¥Using the hash.update() and hash.digest() methods to produce the computed hash.

crypto.createHash() 方法用于创建 Hash 实例。Hash 对象不能直接使用 new 关键字创建。

¥The crypto.createHash() method is used to create Hash instances. Hash objects are not to be created directly using the new keyword.

示例:使用 Hash 对象作为流:

¥Example: Using Hash objects as streams:

const {
  createHash,
} = await import('node:crypto');

const hash = createHash('sha256');

hash.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = hash.read();
  if (data) {
    console.log(data.toString('hex'));
    // Prints:
    //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
  }
});

hash.write('some data to hash');
hash.end();const {
  createHash,
} = require('node:crypto');

const hash = createHash('sha256');

hash.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = hash.read();
  if (data) {
    console.log(data.toString('hex'));
    // Prints:
    //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
  }
});

hash.write('some data to hash');
hash.end();

示例:使用 Hash 和管道流:

¥Example: Using Hash and piped streams:

import { createReadStream } from 'node:fs';
import { stdout } from 'node:process';
const { createHash } = await import('node:crypto');

const hash = createHash('sha256');

const input = createReadStream('test.js');
input.pipe(hash).setEncoding('hex').pipe(stdout);const { createReadStream } = require('node:fs');
const { createHash } = require('node:crypto');
const { stdout } = require('node:process');

const hash = createHash('sha256');

const input = createReadStream('test.js');
input.pipe(hash).setEncoding('hex').pipe(stdout);

示例:使用 hash.update()hash.digest() 方法:

¥Example: Using the hash.update() and hash.digest() methods:

const {
  createHash,
} = await import('node:crypto');

const hash = createHash('sha256');

hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50const {
  createHash,
} = require('node:crypto');

const hash = createHash('sha256');

hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50

hash.copy([options])#

创建新的 Hash 对象,其中包含当前 Hash 对象的内部状态的深层副本。

¥Creates a new Hash object that contains a deep copy of the internal state of the current Hash object.

可选的 options 参数控制流的行为。对于 XOF 哈希函数(例如 'shake256'),可以使用 outputLength 选项指定所需的输出长度(以字节为单位)。

¥The optional options argument controls stream behavior. For XOF hash functions such as 'shake256', the outputLength option can be used to specify the desired output length in bytes.

在调用 hash.digest() 方法后尝试复制 Hash 对象时会引发错误。

¥An error is thrown when an attempt is made to copy the Hash object after its hash.digest() method has been called.

// Calculate a rolling hash.
const {
  createHash,
} = await import('node:crypto');

const hash = createHash('sha256');

hash.update('one');
console.log(hash.copy().digest('hex'));

hash.update('two');
console.log(hash.copy().digest('hex'));

hash.update('three');
console.log(hash.copy().digest('hex'));

// Etc.// Calculate a rolling hash.
const {
  createHash,
} = require('node:crypto');

const hash = createHash('sha256');

hash.update('one');
console.log(hash.copy().digest('hex'));

hash.update('two');
console.log(hash.copy().digest('hex'));

hash.update('three');
console.log(hash.copy().digest('hex'));

// Etc.

hash.digest([encoding])#

计算传给被哈希的所有数据的摘要(使用 hash.update() 方法)。如果提供了 encoding,将返回一个字符串;否则返回 Buffer

¥Calculates the digest of all of the data passed to be hashed (using the hash.update() method). If encoding is provided a string will be returned; otherwise a Buffer is returned.

Hash 对象在调用 hash.digest() 方法后不能再次使用。多次调用将导致抛出错误。

¥The Hash object can not be used again after hash.digest() method has been called. Multiple calls will cause an error to be thrown.

hash.update(data[, inputEncoding])#

使用给定的 data 更新哈希内容,其编码在 inputEncoding 中给出。如果未提供 encoding,且 data 是字符串,则强制为 'utf8' 编码。如果 dataBufferTypedArrayDataView,则忽略 inputEncoding

¥Updates the hash content with the given data, the encoding of which is given in inputEncoding. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

这可以在流式传输时使用新数据多次调用。

¥This can be called many times with new data as it is streamed.

类:Hmac#

¥Class: Hmac

Hmac 类是用于创建加密 HMAC 摘要的实用工具。它可以通过以下两种方式之一使用:

¥The Hmac class is a utility for creating cryptographic HMAC digests. It can be used in one of two ways:

  • 作为可读可写的 ,写入数据以在可读端生成计算的 HMAC 摘要,或者

    ¥As a stream that is both readable and writable, where data is written to produce a computed HMAC digest on the readable side, or

  • 使用 hmac.update()hmac.digest() 方法生成计算出的 HMAC 摘要。

    ¥Using the hmac.update() and hmac.digest() methods to produce the computed HMAC digest.

crypto.createHmac() 方法用于创建 Hmac 实例。Hmac 对象不能直接使用 new 关键字创建。

¥The crypto.createHmac() method is used to create Hmac instances. Hmac objects are not to be created directly using the new keyword.

示例:使用 Hmac 对象作为流:

¥Example: Using Hmac objects as streams:

const {
  createHmac,
} = await import('node:crypto');

const hmac = createHmac('sha256', 'a secret');

hmac.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = hmac.read();
  if (data) {
    console.log(data.toString('hex'));
    // Prints:
    //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
  }
});

hmac.write('some data to hash');
hmac.end();const {
  createHmac,
} = require('node:crypto');

const hmac = createHmac('sha256', 'a secret');

hmac.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = hmac.read();
  if (data) {
    console.log(data.toString('hex'));
    // Prints:
    //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
  }
});

hmac.write('some data to hash');
hmac.end();

示例:使用 Hmac 和管道流:

¥Example: Using Hmac and piped streams:

import { createReadStream } from 'node:fs';
import { stdout } from 'node:process';
const {
  createHmac,
} = await import('node:crypto');

const hmac = createHmac('sha256', 'a secret');

const input = createReadStream('test.js');
input.pipe(hmac).pipe(stdout);const {
  createReadStream,
} = require('node:fs');
const {
  createHmac,
} = require('node:crypto');
const { stdout } = require('node:process');

const hmac = createHmac('sha256', 'a secret');

const input = createReadStream('test.js');
input.pipe(hmac).pipe(stdout);

示例:使用 hmac.update()hmac.digest() 方法:

¥Example: Using the hmac.update() and hmac.digest() methods:

const {
  createHmac,
} = await import('node:crypto');

const hmac = createHmac('sha256', 'a secret');

hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77econst {
  createHmac,
} = require('node:crypto');

const hmac = createHmac('sha256', 'a secret');

hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e

hmac.digest([encoding])#

计算使用 hmac.update() 传入的所有数据的 HMAC 摘要。如果提供了 encoding,则返回一个字符串;否则返回 Buffer

¥Calculates the HMAC digest of all of the data passed using hmac.update(). If encoding is provided a string is returned; otherwise a Buffer is returned;

Hmac 对象在 hmac.digest() 被调用后不能再次使用。多次调用 hmac.digest() 将导致抛出错误。

¥The Hmac object can not be used again after hmac.digest() has been called. Multiple calls to hmac.digest() will result in an error being thrown.

hmac.update(data[, inputEncoding])#

使用给定的 data 更新 Hmac 内容,其编码在 inputEncoding 中给出。如果未提供 encoding,且 data 是字符串,则强制为 'utf8' 编码。如果 dataBufferTypedArrayDataView,则忽略 inputEncoding

¥Updates the Hmac content with the given data, the encoding of which is given in inputEncoding. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

这可以在流式传输时使用新数据多次调用。

¥This can be called many times with new data as it is streamed.

类:KeyObject#

¥Class: KeyObject

Node.js 使用 KeyObject 类来表示对称或非对称密钥,每种密钥暴露不同的功能。crypto.createSecretKey()crypto.createPublicKey()crypto.createPrivateKey() 方法用于创建 KeyObject 实例。KeyObject 对象不能直接使用 new 关键字创建。

¥Node.js uses a KeyObject class to represent a symmetric or asymmetric key, and each kind of key exposes different functions. The crypto.createSecretKey(), crypto.createPublicKey() and crypto.createPrivateKey() methods are used to create KeyObject instances. KeyObject objects are not to be created directly using the new keyword.

由于改进的安全功能,大多数应用应考虑使用新的 KeyObject API 而不是将密钥作为字符串或 Buffer 传递。

¥Most applications should consider using the new KeyObject API instead of passing keys as strings or Buffers due to improved security features.

KeyObject 实例可以通过 postMessage() 传给其他线程。接收者获得克隆的 KeyObjectKeyObject 不需要在 transferList 参数中列出。

¥KeyObject instances can be passed to other threads via postMessage(). The receiver obtains a cloned KeyObject, and the KeyObject does not need to be listed in the transferList argument.

静态方法:KeyObject.from(key)#

¥Static method: KeyObject.from(key)

示例:将 CryptoKey 实例转换为 KeyObject

¥Example: Converting a CryptoKey instance to a KeyObject:

const { KeyObject } = await import('node:crypto');
const { subtle } = globalThis.crypto;

const key = await subtle.generateKey({
  name: 'HMAC',
  hash: 'SHA-256',
  length: 256,
}, true, ['sign', 'verify']);

const keyObject = KeyObject.from(key);
console.log(keyObject.symmetricKeySize);
// Prints: 32 (symmetric key size in bytes)const { KeyObject } = require('node:crypto');
const { subtle } = globalThis.crypto;

(async function() {
  const key = await subtle.generateKey({
    name: 'HMAC',
    hash: 'SHA-256',
    length: 256,
  }, true, ['sign', 'verify']);

  const keyObject = KeyObject.from(key);
  console.log(keyObject.symmetricKeySize);
  // Prints: 32 (symmetric key size in bytes)
})();

keyObject.asymmetricKeyDetails#

  • <Object>

    • modulusLength<number> 以位为单位的密钥大小(RSA、DSA)。

      ¥modulusLength: <number> Key size in bits (RSA, DSA).

    • publicExponent<bigint> 公共指数 (RSA)。

      ¥publicExponent: <bigint> Public exponent (RSA).

    • hashAlgorithm<string> 消息摘要的名称 (RSA-PSS)。

      ¥hashAlgorithm: <string> Name of the message digest (RSA-PSS).

    • mgf1HashAlgorithm<string> MGF1 (RSA-PSS) 使用的消息摘要的名称。

      ¥mgf1HashAlgorithm: <string> Name of the message digest used by MGF1 (RSA-PSS).

    • saltLength<number> 以字节为单位的最小盐长度 (RSA-PSS)。

      ¥saltLength: <number> Minimal salt length in bytes (RSA-PSS).

    • divisorLength<number> q 的大小(以位为单位)(DSA)。

      ¥divisorLength: <number> Size of q in bits (DSA).

    • namedCurve<string> 曲线的名称 (EC)。

      ¥namedCurve: <string> Name of the curve (EC).

此属性仅存在于非对称密钥上。根据密钥的类型,此对象包含有关密钥的信息。通过此属性获得的任何信息都不能用于唯一标识密钥或危及密钥的安全性。

¥This property exists only on asymmetric keys. Depending on the type of the key, this object contains information about the key. None of the information obtained through this property can be used to uniquely identify a key or to compromise the security of the key.

对于 RSA-PSS 密钥,如果密钥材料包含 RSASSA-PSS-params 序列,则将设置 hashAlgorithmmgf1HashAlgorithmsaltLength 属性。

¥For RSA-PSS keys, if the key material contains a RSASSA-PSS-params sequence, the hashAlgorithm, mgf1HashAlgorithm, and saltLength properties will be set.

其他密钥细节可能会使用额外属性通过此 API 暴露。

¥Other key details might be exposed via this API using additional attributes.

keyObject.asymmetricKeyType#

对于非对称密钥,此属性表示密钥的类型。支持的密钥类型有:

¥For asymmetric keys, this property represents the type of the key. Supported key types are:

  • 'rsa'(OID 1.2.840.113549.1.1.1)

  • 'rsa-pss'(OID 1.2.840.113549.1.1.10)

  • 'dsa'(OID 1.2.840.10040.4.1)

  • 'ec'(OID 1.2.840.10045.2.1)

  • 'x25519'(OID 1.3.101.110)

  • 'x448'(OID 1.3.101.111)

  • 'ed25519'(OID 1.3.101.112)

  • 'ed448'(OID 1.3.101.113)

  • 'dh'(OID 1.2.840.113549.1.3.1)

对于无法识别的 KeyObject 类型和对称密钥,此属性为 undefined

¥This property is undefined for unrecognized KeyObject types and symmetric keys.

keyObject.export([options])#

对于对称密钥,可以使用以下编码选项:

¥For symmetric keys, the following encoding options can be used:

  • format<string> 必须是 'buffer'(默认)或 'jwk'

    ¥format: <string> Must be 'buffer' (default) or 'jwk'.

对于公钥,可以使用以下编码选项:

¥For public keys, the following encoding options can be used:

  • type<string> 必须是 'pkcs1'(仅限 RSA)或 'spki' 之一。

    ¥type: <string> Must be one of 'pkcs1' (RSA only) or 'spki'.

  • format<string> 必须是 'pem''der''jwk'

    ¥format: <string> Must be 'pem', 'der', or 'jwk'.

对于私钥,可以使用以下编码选项:

¥For private keys, the following encoding options can be used:

  • type<string> 必须是 'pkcs1'(仅限 RSA)、'pkcs8''sec1'(仅限 EC)之一。

    ¥type: <string> Must be one of 'pkcs1' (RSA only), 'pkcs8' or 'sec1' (EC only).

  • format<string> 必须是 'pem''der''jwk'

    ¥format: <string> Must be 'pem', 'der', or 'jwk'.

  • cipher<string> 如果指定,私钥将使用给定的 cipherpassphrase 使用基于 PKCS#5 v2.0 密码的加密进行加密。

    ¥cipher: <string> If specified, the private key will be encrypted with the given cipher and passphrase using PKCS#5 v2.0 password based encryption.

  • passphrase<string> | <Buffer> 用于加密的密码,请参阅 cipher

    ¥passphrase: <string> | <Buffer> The passphrase to use for encryption, see cipher.

结果类型取决于所选的编码格式,当 PEM 时结果是字符串,当 DER 时它将是包含编码为 DER 的数据的缓冲区,当 JWK 时它将是对象。

¥The result type depends on the selected encoding format, when PEM the result is a string, when DER it will be a buffer containing the data encoded as DER, when JWK it will be an object.

选择 JWK 编码格式时,将忽略所有其他编码选项。

¥When JWK encoding format was selected, all other encoding options are ignored.

PKCS#1、SEC1 和 PKCS#8 类型的密钥可以通过使用 cipherformat 选项的组合进行加密。PKCS#8 type 可以与任何 format 一起使用,通过指定 cipher 来加密任何密钥算法(RSA、EC 或 DH)。当使用 PEM format 时,PKCS#1 和 SEC1 只能通过指定 cipher 来加密。为了获得最大的兼容性,对加密的私钥使用 PKCS#8。由于 PKCS#8 定义了自己的加密机制,因此在加密 PKCS#8 密钥时不支持 PEM 级加密。有关 PKCS#8 加密的信息,请参阅 RFC 5208,有关 PKCS#1 和 SEC1 加密的信息,请参阅 RFC 1421

¥PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of the cipher and format options. The PKCS#8 type can be used with any format to encrypt any key algorithm (RSA, EC, or DH) by specifying a cipher. PKCS#1 and SEC1 can only be encrypted by specifying a cipher when the PEM format is used. For maximum compatibility, use PKCS#8 for encrypted private keys. Since PKCS#8 defines its own encryption mechanism, PEM-level encryption is not supported when encrypting a PKCS#8 key. See RFC 5208 for PKCS#8 encryption and RFC 1421 for PKCS#1 and SEC1 encryption.

keyObject.equals(otherKeyObject)#

根据键的类型、值和参数是否完全相同,返回 truefalse。这种方法不是 常量时间

¥Returns true or false depending on whether the keys have exactly the same type, value, and parameters. This method is not constant time.

keyObject.symmetricKeySize#

对于秘密密钥,此属性表示密钥的大小(以字节为单位)。对于非对称密钥,此属性为 undefined

¥For secret keys, this property represents the size of the key in bytes. This property is undefined for asymmetric keys.

keyObject.type#

根据此 KeyObject 的类型,此属性是 'secret' 表示秘密(对称)密钥,'public' 表示公共(非对称)密钥或 'private' 表示私有(非对称)密钥。

¥Depending on the type of this KeyObject, this property is either 'secret' for secret (symmetric) keys, 'public' for public (asymmetric) keys or 'private' for private (asymmetric) keys.

类:Sign#

¥Class: Sign

Sign 类是用于生成签名的实用工具。它可以通过以下两种方式之一使用:

¥The Sign class is a utility for generating signatures. It can be used in one of two ways:

crypto.createSign() 方法用于创建 Sign 实例。参数是要使用的哈希函数的字符串名称。Sign 对象不能直接使用 new 关键字创建。

¥The crypto.createSign() method is used to create Sign instances. The argument is the string name of the hash function to use. Sign objects are not to be created directly using the new keyword.

示例:使用 SignVerify 对象作为流:

¥Example: Using Sign and Verify objects as streams:

const {
  generateKeyPairSync,
  createSign,
  createVerify,
} = await import('node:crypto');

const { privateKey, publicKey } = generateKeyPairSync('ec', {
  namedCurve: 'sect239k1',
});

const sign = createSign('SHA256');
sign.write('some data to sign');
sign.end();
const signature = sign.sign(privateKey, 'hex');

const verify = createVerify('SHA256');
verify.write('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature, 'hex'));
// Prints: trueconst {
  generateKeyPairSync,
  createSign,
  createVerify,
} = require('node:crypto');

const { privateKey, publicKey } = generateKeyPairSync('ec', {
  namedCurve: 'sect239k1',
});

const sign = createSign('SHA256');
sign.write('some data to sign');
sign.end();
const signature = sign.sign(privateKey, 'hex');

const verify = createVerify('SHA256');
verify.write('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature, 'hex'));
// Prints: true

示例:使用 sign.update()verify.update() 方法:

¥Example: Using the sign.update() and verify.update() methods:

const {
  generateKeyPairSync,
  createSign,
  createVerify,
} = await import('node:crypto');

const { privateKey, publicKey } = generateKeyPairSync('rsa', {
  modulusLength: 2048,
});

const sign = createSign('SHA256');
sign.update('some data to sign');
sign.end();
const signature = sign.sign(privateKey);

const verify = createVerify('SHA256');
verify.update('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature));
// Prints: trueconst {
  generateKeyPairSync,
  createSign,
  createVerify,
} = require('node:crypto');

const { privateKey, publicKey } = generateKeyPairSync('rsa', {
  modulusLength: 2048,
});

const sign = createSign('SHA256');
sign.update('some data to sign');
sign.end();
const signature = sign.sign(privateKey);

const verify = createVerify('SHA256');
verify.update('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature));
// Prints: true

sign.sign(privateKey[, outputEncoding])#

使用 sign.update()sign.write() 计算通过的所有数据的签名。

¥Calculates the signature on all the data passed through using either sign.update() or sign.write().

如果 privateKey 不是 KeyObject,则此函数的行为就像将 privateKey 传给 crypto.createPrivateKey() 一样。如果是对象,则可以传入以下额外属性:

¥If privateKey is not a KeyObject, this function behaves as if privateKey had been passed to crypto.createPrivateKey(). If it is an object, the following additional properties can be passed:

  • dsaEncoding <string> 对于 DSA 和 ECDSA,此选项指定生成签名的格式。它可以是以下之一:

    ¥dsaEncoding <string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:

    • 'der'(默认):DER 编码的 ASN.1 签名结构编码 (r, s)

      ¥'der' (default): DER-encoded ASN.1 signature structure encoding (r, s).

    • 'ieee-p1363':IEEE-P1363 中提议的签名格式 r || s

      ¥'ieee-p1363': Signature format r || s as proposed in IEEE-P1363.

  • padding <integer> RSA 的可选填充值,以下之一:

    ¥padding <integer> Optional padding value for RSA, one of the following:

    • crypto.constants.RSA_PKCS1_PADDING(默认)

      ¥crypto.constants.RSA_PKCS1_PADDING (default)

    • crypto.constants.RSA_PKCS1_PSS_PADDING

    RSA_PKCS1_PSS_PADDING 将使用 MGF1,其散列函数与 RFC 4055 第 3.1 节中指定的消息签名相同,除非 MGF1 散列函数已根据 RFC 4055 第 3.3 节指定为密钥的一部分。

    ¥RSA_PKCS1_PSS_PADDING will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055.

  • saltLength <integer> 填充为 RSA_PKCS1_PSS_PADDING 时的盐长度。特殊值 crypto.constants.RSA_PSS_SALTLEN_DIGEST 将盐长度设置为摘要大小,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN(默认值)将其设置为最大允许值。

    ¥saltLength <integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

如果提供了 outputEncoding,则返回一个字符串;否则返回 Buffer

¥If outputEncoding is provided a string is returned; otherwise a Buffer is returned.

Sign 对象在调用 sign.sign() 方法后不能再次使用。多次调用 sign.sign() 将导致抛出错误。

¥The Sign object can not be again used after sign.sign() method has been called. Multiple calls to sign.sign() will result in an error being thrown.

sign.update(data[, inputEncoding])#

使用给定的 data 更新 Sign 内容,其编码在 inputEncoding 中给出。如果未提供 encoding,且 data 是字符串,则强制为 'utf8' 编码。如果 dataBufferTypedArrayDataView,则忽略 inputEncoding

¥Updates the Sign content with the given data, the encoding of which is given in inputEncoding. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

这可以在流式传输时使用新数据多次调用。

¥This can be called many times with new data as it is streamed.

类:Verify#

¥Class: Verify

Verify 类是用于验证签名的实用工具。它可以通过以下两种方式之一使用:

¥The Verify class is a utility for verifying signatures. It can be used in one of two ways:

crypto.createVerify() 方法用于创建 Verify 实例。Verify 对象不能直接使用 new 关键字创建。

¥The crypto.createVerify() method is used to create Verify instances. Verify objects are not to be created directly using the new keyword.

有关示例,请参见 Sign

¥See Sign for examples.

verify.update(data[, inputEncoding])#

使用给定的 data 更新 Verify 内容,其编码在 inputEncoding 中给出。如果未提供 inputEncoding,且 data 是字符串,则强制为 'utf8' 编码。如果 dataBufferTypedArrayDataView,则忽略 inputEncoding

¥Updates the Verify content with the given data, the encoding of which is given in inputEncoding. If inputEncoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

这可以在流式传输时使用新数据多次调用。

¥This can be called many times with new data as it is streamed.

verify.verify(object, signature[, signatureEncoding])#

使用给定的 objectsignature 验证提供的数据。

¥Verifies the provided data using the given object and signature.

如果 object 不是 KeyObject,则此函数的行为就像将 object 传给 crypto.createPublicKey() 一样。如果是对象,则可以传入以下额外属性:

¥If object is not a KeyObject, this function behaves as if object had been passed to crypto.createPublicKey(). If it is an object, the following additional properties can be passed:

  • dsaEncoding <string> 对于 DSA 和 ECDSA,此选项指定签名的格式。它可以是以下之一:

    ¥dsaEncoding <string> For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:

    • 'der'(默认):DER 编码的 ASN.1 签名结构编码 (r, s)

      ¥'der' (default): DER-encoded ASN.1 signature structure encoding (r, s).

    • 'ieee-p1363':IEEE-P1363 中提议的签名格式 r || s

      ¥'ieee-p1363': Signature format r || s as proposed in IEEE-P1363.

  • padding <integer> RSA 的可选填充值,以下之一:

    ¥padding <integer> Optional padding value for RSA, one of the following:

    • crypto.constants.RSA_PKCS1_PADDING(默认)

      ¥crypto.constants.RSA_PKCS1_PADDING (default)

    • crypto.constants.RSA_PKCS1_PSS_PADDING

    RSA_PKCS1_PSS_PADDING 将使用具有相同哈希函数的 MGF1,用于验证 RFC 4055 第 3.1 节中指定的消息,除非 MGF1 哈希函数已根据 RFC 4055 第 3.3 节指定为密钥的一部分。

    ¥RSA_PKCS1_PSS_PADDING will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of RFC 4055, unless an MGF1 hash function has been specified as part of the key in compliance with section 3.3 of RFC 4055.

  • saltLength <integer> 填充为 RSA_PKCS1_PSS_PADDING 时的盐长度。特殊值 crypto.constants.RSA_PSS_SALTLEN_DIGEST 将盐长度设置为摘要大小,crypto.constants.RSA_PSS_SALTLEN_AUTO(默认值)使其自动确定。

    ¥saltLength <integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_AUTO (default) causes it to be determined automatically.

signature 参数是先前计算的数据签名,在 signatureEncoding 中。如果指定了 signatureEncoding,则 signature 应为字符串;否则 signature 应为 BufferTypedArrayDataView

¥The signature argument is the previously calculated signature for the data, in the signatureEncoding. If a signatureEncoding is specified, the signature is expected to be a string; otherwise signature is expected to be a Buffer, TypedArray, or DataView.

verify 对象在 verify.verify() 被调用后不能再次使用。多次调用 verify.verify() 将导致抛出错误。

¥The verify object can not be used again after verify.verify() has been called. Multiple calls to verify.verify() will result in an error being thrown.

因为公钥可以从私钥导出,所以可以传递私钥而不是公钥。

¥Because public keys can be derived from private keys, a private key may be passed instead of a public key.

类:X509Certificate#

¥Class: X509Certificate

封装 X509 证书并提供对其信息的只读访问。

¥Encapsulates an X509 certificate and provides read-only access to its information.

const { X509Certificate } = await import('node:crypto');

const x509 = new X509Certificate('{... pem encoded cert ...}');

console.log(x509.subject);const { X509Certificate } = require('node:crypto');

const x509 = new X509Certificate('{... pem encoded cert ...}');

console.log(x509.subject);

new X509Certificate(buffer)#

x509.ca#

  • 类型:<boolean> 如果这是证书颁发机构(CA)证书,则为 true

    ¥Type: <boolean> Will be true if this is a Certificate Authority (CA) certificate.

x509.checkEmail(email[, options])#

  • email <string>

  • options <Object>

    • subject <string> 'default''always''never'。默认值:'default'

      ¥subject <string> 'default', 'always', or 'never'. Default: 'default'.

  • 返回:<string> | <undefined> 如果证书匹配,则返回 email,如果不匹配,则返回 undefined

    ¥Returns: <string> | <undefined> Returns email if the certificate matches, undefined if it does not.

检查证书是否与给定的电子邮件地址匹配。

¥Checks whether the certificate matches the given email address.

如果 'subject' 选项未定义或设置为 'default',则仅当主题备用名称扩展不存在或不包含任何电子邮件地址时才考虑证书主题。

¥If the 'subject' option is undefined or set to 'default', the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any email addresses.

如果 'subject' 选项设置为 'always',并且如果主题备用名称扩展不存在或不包含匹配的电子邮件地址,则考虑证书主题。

¥If the 'subject' option is set to 'always' and if the subject alternative name extension either does not exist or does not contain a matching email address, the certificate subject is considered.

如果 'subject' 选项设置为 'never',则从不考虑证书主题,即使证书不包含主题替代名称。

¥If the 'subject' option is set to 'never', the certificate subject is never considered, even if the certificate contains no subject alternative names.

x509.checkHost(name[, options])#

  • name <string>

  • options <Object>

    • subject <string> 'default''always''never'。默认值:'default'

      ¥subject <string> 'default', 'always', or 'never'. Default: 'default'.

    • wildcards <boolean> 默认值:true

      ¥wildcards <boolean> Default: true.

    • partialWildcards <boolean> 默认值:true

      ¥partialWildcards <boolean> Default: true.

    • multiLabelWildcards <boolean> 默认值:false

      ¥multiLabelWildcards <boolean> Default: false.

    • singleLabelSubdomains <boolean> 默认值:false

      ¥singleLabelSubdomains <boolean> Default: false.

  • 返回:<string> | <undefined> 返回与 name 匹配的主题名称,如果没有主题名称与 name 匹配,则返回 undefined

    ¥Returns: <string> | <undefined> Returns a subject name that matches name, or undefined if no subject name matches name.

检查证书是否与给定的主机名匹配。

¥Checks whether the certificate matches the given host name.

如果证书与给定的主机名匹配,则返回匹配的主题名。返回的名称可能是完全匹配的(例如,foo.example.com)或者它可能包含通配符(例如,*.example.com)。因为主机名比较不区分大小写,所以返回的主题名也可能与给定的 name 大小写不同。

¥If the certificate matches the given host name, the matching subject name is returned. The returned name might be an exact match (e.g., foo.example.com) or it might contain wildcards (e.g., *.example.com). Because host name comparisons are case-insensitive, the returned subject name might also differ from the given name in capitalization.

如果 'subject' 选项未定义或设置为 'default',则仅当主题替代名称扩展不存在或不包含任何 DNS 名称时才考虑证书主题。此行为与 RFC 2818 ("通过 TLS 的 HTTP") 一致。

¥If the 'subject' option is undefined or set to 'default', the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any DNS names. This behavior is consistent with RFC 2818 ("HTTP Over TLS").

如果 'subject' 选项设置为 'always',并且如果主题备用名称扩展不存在或不包含匹配的 DNS 名称,则考虑证书主题。

¥If the 'subject' option is set to 'always' and if the subject alternative name extension either does not exist or does not contain a matching DNS name, the certificate subject is considered.

如果 'subject' 选项设置为 'never',则从不考虑证书主题,即使证书不包含主题替代名称。

¥If the 'subject' option is set to 'never', the certificate subject is never considered, even if the certificate contains no subject alternative names.

x509.checkIP(ip)#

检查证书是否与给定的 IP 地址(IPv4 或 IPv6)匹配。

¥Checks whether the certificate matches the given IP address (IPv4 or IPv6).

仅考虑 RFC 5280 iPAddress 主题备用名称,并且它们必须与给定的 ip 地址完全匹配。其他主题替代名称以及证书的主题字段将被忽略。

¥Only RFC 5280 iPAddress subject alternative names are considered, and they must match the given ip address exactly. Other subject alternative names as well as the subject field of the certificate are ignored.

x509.checkIssued(otherCert)#

检查此证书是否由给定的 otherCert 颁发。

¥Checks whether this certificate was issued by the given otherCert.

x509.checkPrivateKey(privateKey)#

检查此证书的公钥是否与给定的私钥一致。

¥Checks whether the public key for this certificate is consistent with the given private key.

x509.fingerprint#

此证书的 SHA-1 指纹。

¥The SHA-1 fingerprint of this certificate.

由于 SHA-1 被加密破解,并且由于 SHA-1 的安全性明显低于通常用于签署证书的算法,因此请考虑使用 x509.fingerprint256

¥Because SHA-1 is cryptographically broken and because the security of SHA-1 is significantly worse than that of algorithms that are commonly used to sign certificates, consider using x509.fingerprint256 instead.

x509.fingerprint256#

此证书的 SHA-256 指纹。

¥The SHA-256 fingerprint of this certificate.

x509.fingerprint512#

此证书的 SHA-512 指纹。

¥The SHA-512 fingerprint of this certificate.

因为计算 SHA-256 指纹通常更快,并且因为它只有 SHA-512 指纹的一半大小,所以 x509.fingerprint256 可能是更好的选择。虽然 SHA-512 一般可以提供更高级别的安全性,但 SHA-256 的安全性与大多数通常用于签署证书的算法相匹配。

¥Because computing the SHA-256 fingerprint is usually faster and because it is only half the size of the SHA-512 fingerprint, x509.fingerprint256 may be a better choice. While SHA-512 presumably provides a higher level of security in general, the security of SHA-256 matches that of most algorithms that are commonly used to sign certificates.

x509.infoAccess#

证书权限信息访问扩展的文本表示。

¥A textual representation of the certificate's authority information access extension.

这是一个换行分隔的访问描述列表。每一行以访问方法和访问位置的种类开头,后跟一个冒号和与访问位置关联的值。

¥This is a line feed separated list of access descriptions. Each line begins with the access method and the kind of the access location, followed by a colon and the value associated with the access location.

在表示访问方法和访问位置类型的前缀之后,每行的其余部分可能用引号括起来,表示该值是 JSON 字符串字面。为了向后兼容,Node.js 仅在必要时在此属性中使用 JSON 字符串字面以避免歧义。第三方代码应准备好处理这两种可能的输入格式

¥After the prefix denoting the access method and the kind of the access location, the remainder of each line might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.

x509.issuer#

此证书中包含的发行人标识。

¥The issuer identification included in this certificate.

x509.issuerCertificate#

颁发者证书或 undefined(如果颁发者证书不可用)。

¥The issuer certificate or undefined if the issuer certificate is not available.

x509.extKeyUsage#

详细说明此证书的关键扩展用途的数组。

¥An array detailing the key extended usages for this certificate.

x509.publicKey#

此证书的公钥 <KeyObject>

¥The public key <KeyObject> for this certificate.

x509.raw#

包含此证书的 DER 编码的 Buffer

¥A Buffer containing the DER encoding of this certificate.

x509.serialNumber#

此证书的序列号。

¥The serial number of this certificate.

序列号由证书颁发机构分配,不能唯一标识证书。考虑使用 x509.fingerprint256 作为唯一标识符。

¥Serial numbers are assigned by certificate authorities and do not uniquely identify certificates. Consider using x509.fingerprint256 as a unique identifier instead.

x509.subject#

本证书的完整主题。

¥The complete subject of this certificate.

x509.subjectAltName#

为此证书指定的使用者备用名称。

¥The subject alternative name specified for this certificate.

这是一个以逗号分隔的主题替代名称列表。每个条目都以一个字符串开头,该字符串标识主题替代名称的种类,后跟一个冒号以及与该条目关联的值。

¥This is a comma-separated list of subject alternative names. Each entry begins with a string identifying the kind of the subject alternative name followed by a colon and the value associated with the entry.

早期版本的 Node.js 错误地认为在双字符序列 ', ' 处拆分此属性是安全的(请参阅 CVE-2021-44532)。但是,恶意证书和合法证书都可以包含主题替代名称,当表示为字符串时,这些名称包含此序列。

¥Earlier versions of Node.js incorrectly assumed that it is safe to split this property at the two-character sequence ', ' (see CVE-2021-44532). However, both malicious and legitimate certificates can contain subject alternative names that include this sequence when represented as a string.

在表示条目类型的前缀之后,每个条目的其余部分可能用引号括起来,以指示该值是 JSON 字符串字面。为了向后兼容,Node.js 仅在必要时在此属性中使用 JSON 字符串字面以避免歧义。第三方代码应准备好处理这两种可能的输入格式

¥After the prefix denoting the type of the entry, the remainder of each entry might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.

x509.toJSON()#

X509 证书没有标准的 JSON 编码。toJSON() 方法返回包含 PEM 编码证书的字符串。

¥There is no standard JSON encoding for X509 certificates. The toJSON() method returns a string containing the PEM encoded certificate.

x509.toLegacyObject()#

使用旧版 证书对象 编码返回有关此证书的信息。

¥Returns information about this certificate using the legacy certificate object encoding.

x509.toString()#

返回 PEM 编码的证书。

¥Returns the PEM-encoded certificate.

x509.validFrom#

此证书被视为有效的起始日期/时间。

¥The date/time from which this certificate is considered valid.

x509.validTo#

此证书被视为有效的结束日期/时间。

¥The date/time until which this certificate is considered valid.

x509.verify(publicKey)#

验证此证书是否由给定的公钥签名。不对证书执行任何其他验证检查。

¥Verifies that this certificate was signed by the given public key. Does not perform any other validation checks on the certificate.

node:crypto 模块方法和属性#

¥node:crypto module methods and properties

crypto.constants#

包含用于加密和安全相关操作的常用常量的对象。目前定义的具体常量在 加密常量 中有说明。

¥An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in Crypto constants.

crypto.fips#

稳定性: 0 - 已弃用

¥Stability: 0 - Deprecated

用于检查和控制当前是否正在使用符合 FIPS 的加密提供程序的属性。设置为 true 需要 Node.js 的 FIPS 构建。

¥Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js.

此属性已弃用。请改用 crypto.setFips()crypto.getFips()

¥This property is deprecated. Please use crypto.setFips() and crypto.getFips() instead.

crypto.checkPrime(candidate[, options], callback)#

  • candidate <ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> 编码为任意长度的大端字节序序列的可能素数。

    ¥candidate <ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> A possible prime encoded as a sequence of big endian octets of arbitrary length.

  • options <Object>

    • checks <number> 要执行的 Miller-Rabin 概率素性迭代次数。当值为 0(零)时,将使用多次检查,对于随机输入产生最多 2-64 的误报率。选择多个检查时必须小心。有关更多详细信息,请参阅 BN_is_prime_ex 函数 nchecks 选项的 OpenSSL 文档。默认值:0

      ¥checks <number> The number of Miller-Rabin probabilistic primality iterations to perform. When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details. Default: 0

  • callback <Function>

    • err <Error> 如果检查期间发生错误,则设置为 <Error> 对象。

      ¥err <Error> Set to an <Error> object if an error occurred during check.

    • result <boolean> 如果候选者是错误概率小于 0.25 ** options.checks 的素数,则为 true

      ¥result <boolean> true if the candidate is a prime with an error probability less than 0.25 ** options.checks.

检查 candidate 的素性。

¥Checks the primality of the candidate.

crypto.checkPrimeSync(candidate[, options])#

  • candidate <ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> 编码为任意长度的大端字节序序列的可能素数。

    ¥candidate <ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint> A possible prime encoded as a sequence of big endian octets of arbitrary length.

  • options <Object>

    • checks <number> 要执行的 Miller-Rabin 概率素性迭代次数。当值为 0(零)时,将使用多次检查,对于随机输入产生最多 2-64 的误报率。选择多个检查时必须小心。有关更多详细信息,请参阅 BN_is_prime_ex 函数 nchecks 选项的 OpenSSL 文档。默认值:0

      ¥checks <number> The number of Miller-Rabin probabilistic primality iterations to perform. When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details. Default: 0

  • 返回:<boolean> 如果候选者是错误概率小于 0.25 ** options.checks 的素数,则为 true

    ¥Returns: <boolean> true if the candidate is a prime with an error probability less than 0.25 ** options.checks.

检查 candidate 的素性。

¥Checks the primality of the candidate.

crypto.createCipher(algorithm, password[, options])#

稳定性: 0 - 已弃用:改用 crypto.createCipheriv()

¥Stability: 0 - Deprecated: Use crypto.createCipheriv() instead.

创建并返回使用给定 algorithmpasswordCipher 对象。

¥Creates and returns a Cipher object that uses the given algorithm and password.

options 参数控制流行为并且是可选的,除非使用 CCM 或 OCB 模式(例如 'aes-128-ccm')的密码。在这种情况下,需要 authTagLength 选项并以字节为单位指定身份验证标记的长度,请参阅 CCM 模式。在 GCM 模式下,authTagLength 选项不是必需的,但可用于设置 getAuthTag() 将返回的身份验证标签的长度,默认为 16 字节。对于 chacha20-poly1305authTagLength 选项默认为 16 字节。

¥The options argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm') is used. In that case, the authTagLength option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength option is not required but can be used to set the length of the authentication tag that will be returned by getAuthTag() and defaults to 16 bytes. For chacha20-poly1305, the authTagLength option defaults to 16 bytes.

algorithm 依赖于 OpenSSL,例如 'aes192' 等。在最近的 OpenSSL 版本中,openssl list -cipher-algorithms 将显示可用的密码算法。

¥The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list -cipher-algorithms will display the available cipher algorithms.

password 用于派生密钥和初始化向量 (IV)。该值必须是 'latin1' 编码的字符串、BufferTypedArrayDataView

¥The password is used to derive the cipher key and initialization vector (IV). The value must be either a 'latin1' encoded string, a Buffer, a TypedArray, or a DataView.

此函数在语义上对于所有受支持的密码来说都是不安全的,并且对于计数器模式(例如 CTR、GCM 或 CCM)的密码来说存在致命缺陷。

¥This function is semantically insecure for all supported ciphers and fatally flawed for ciphers in counter mode (such as CTR, GCM, or CCM).

crypto.createCipher() 的实现使用 OpenSSL 函数 EVP_BytesToKey 派生密钥,摘要算法设置为 MD5,一次迭代,不加盐。缺少盐允许字典攻击,因为相同的密码总是创建相同的密钥。低迭代次数和非加密安全散列算法允许非常快速地测试密码。

¥The implementation of crypto.createCipher() derives keys using the OpenSSL function EVP_BytesToKey with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly.

根据 OpenSSL 建议使用更现代的算法而不是 EVP_BytesToKey,建议开发者使用 crypto.scrypt() 自行派生密钥和 IV,并使用 crypto.createCipheriv() 创建 Cipher 对象。用户不应在 crypto.createCipher() 中使用计数器模式(例如 CTR、GCM 或 CCM)的密码。使用它们时会触发警告,以避免导致漏洞的 IV 重用风险。GCM 中重用 IV 的情况,详见 Nonce-Disrespecting Adversaries

¥In line with OpenSSL's recommendation to use a more modern algorithm instead of EVP_BytesToKey it is recommended that developers derive a key and IV on their own using crypto.scrypt() and to use crypto.createCipheriv() to create the Cipher object. Users should not use ciphers with counter mode (e.g. CTR, GCM, or CCM) in crypto.createCipher(). A warning is emitted when they are used in order to avoid the risk of IV reuse that causes vulnerabilities. For the case when IV is reused in GCM, see Nonce-Disrespecting Adversaries for details.

crypto.createCipheriv(algorithm, key, iv[, options])#

使用给定的 algorithmkey 和初始化向量(iv)创建并返回 Cipher 对象。

¥Creates and returns a Cipher object, with the given algorithm, key and initialization vector (iv).

options 参数控制流行为并且是可选的,除非使用 CCM 或 OCB 模式(例如 'aes-128-ccm')的密码。在这种情况下,需要 authTagLength 选项并以字节为单位指定身份验证标记的长度,请参阅 CCM 模式。在 GCM 模式下,authTagLength 选项不是必需的,但可用于设置 getAuthTag() 将返回的身份验证标签的长度,默认为 16 字节。对于 chacha20-poly1305authTagLength 选项默认为 16 字节。

¥The options argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm') is used. In that case, the authTagLength option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength option is not required but can be used to set the length of the authentication tag that will be returned by getAuthTag() and defaults to 16 bytes. For chacha20-poly1305, the authTagLength option defaults to 16 bytes.

algorithm 依赖于 OpenSSL,例如 'aes192' 等。在最近的 OpenSSL 版本中,openssl list -cipher-algorithms 将显示可用的密码算法。

¥The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list -cipher-algorithms will display the available cipher algorithms.

keyalgorithm 使用的原始密钥,iv初始化向量。两个参数都必须是 'utf8' 编码的字符串、缓冲区TypedArrayDataViewkey 可以是 secret 类型的 KeyObject。如果加密不需要初始化向量,则 iv 可以是 null

¥The key is the raw key used by the algorithm and iv is an initialization vector. Both arguments must be 'utf8' encoded strings, Buffers, TypedArray, or DataViews. The key may optionally be a KeyObject of type secret. If the cipher does not need an initialization vector, iv may be null.

keyiv 传递字符串时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing strings for key or iv, please consider caveats when using strings as inputs to cryptographic APIs.

初始化向量应该是不可预测的和唯一的;理想情况下,它们将是加密随机的。他们不必是秘密的:IV 通常只是添加到未加密的密文消息中。有些东西必须是不可预测的和独特的,但不一定是秘密的,这听起来可能很矛盾;请记住,攻击者不能提前预测给定的 IV 是什么。

¥Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.

crypto.createDecipher(algorithm, password[, options])#

稳定性: 0 - 已弃用:改用 crypto.createDecipheriv()

¥Stability: 0 - Deprecated: Use crypto.createDecipheriv() instead.

创建并返回使用给定的 algorithmpassword(键)的 Decipher 对象。

¥Creates and returns a Decipher object that uses the given algorithm and password (key).

options 参数控制流行为并且是可选的,除非使用 CCM 或 OCB 模式(例如 'aes-128-ccm')的密码。在这种情况下,需要 authTagLength 选项并以字节为单位指定身份验证标记的长度,请参阅 CCM 模式。对于 chacha20-poly1305authTagLength 选项默认为 16 字节。

¥The options argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm') is used. In that case, the authTagLength option is required and specifies the length of the authentication tag in bytes, see CCM mode. For chacha20-poly1305, the authTagLength option defaults to 16 bytes.

此函数在语义上对于所有受支持的密码来说都是不安全的,并且对于计数器模式(例如 CTR、GCM 或 CCM)的密码来说存在致命缺陷。

¥This function is semantically insecure for all supported ciphers and fatally flawed for ciphers in counter mode (such as CTR, GCM, or CCM).

crypto.createDecipher() 的实现使用 OpenSSL 函数 EVP_BytesToKey 派生密钥,摘要算法设置为 MD5,一次迭代,不加盐。缺少盐允许字典攻击,因为相同的密码总是创建相同的密钥。低迭代次数和非加密安全散列算法允许非常快速地测试密码。

¥The implementation of crypto.createDecipher() derives keys using the OpenSSL function EVP_BytesToKey with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly.

根据 OpenSSL 建议使用更现代的算法而不是 EVP_BytesToKey,建议开发者使用 crypto.scrypt() 自行派生密钥和 IV,并使用 crypto.createDecipheriv() 创建 Decipher 对象。

¥In line with OpenSSL's recommendation to use a more modern algorithm instead of EVP_BytesToKey it is recommended that developers derive a key and IV on their own using crypto.scrypt() and to use crypto.createDecipheriv() to create the Decipher object.

crypto.createDecipheriv(algorithm, key, iv[, options])#

创建并返回使用给定的 algorithmkey 和初始化向量(iv)的 Decipher 对象。

¥Creates and returns a Decipher object that uses the given algorithm, key and initialization vector (iv).

options 参数控制流行为并且是可选的,除非使用 CCM 或 OCB 模式(例如 'aes-128-ccm')的密码。在这种情况下,需要 authTagLength 选项并以字节为单位指定身份验证标记的长度,请参阅 CCM 模式。在 GCM 模式下,authTagLength 选项不是必需的,但可用于将接受的身份验证标签限制为指定的长度。对于 chacha20-poly1305authTagLength 选项默认为 16 字节。

¥The options argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm') is used. In that case, the authTagLength option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength option is not required but can be used to restrict accepted authentication tags to those with the specified length. For chacha20-poly1305, the authTagLength option defaults to 16 bytes.

algorithm 依赖于 OpenSSL,例如 'aes192' 等。在最近的 OpenSSL 版本中,openssl list -cipher-algorithms 将显示可用的密码算法。

¥The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list -cipher-algorithms will display the available cipher algorithms.

keyalgorithm 使用的原始密钥,iv初始化向量。两个参数都必须是 'utf8' 编码的字符串、缓冲区TypedArrayDataViewkey 可以是 secret 类型的 KeyObject。如果加密不需要初始化向量,则 iv 可以是 null

¥The key is the raw key used by the algorithm and iv is an initialization vector. Both arguments must be 'utf8' encoded strings, Buffers, TypedArray, or DataViews. The key may optionally be a KeyObject of type secret. If the cipher does not need an initialization vector, iv may be null.

keyiv 传递字符串时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing strings for key or iv, please consider caveats when using strings as inputs to cryptographic APIs.

初始化向量应该是不可预测的和唯一的;理想情况下,它们将是加密随机的。他们不必是秘密的:IV 通常只是添加到未加密的密文消息中。有些东西必须是不可预测的和独特的,但不一定是秘密的,这听起来可能很矛盾;请记住,攻击者不能提前预测给定的 IV 是什么。

¥Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.

crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding])#

使用提供的 prime 和可选的特定 generator 创建 DiffieHellman 密钥交换对象。

¥Creates a DiffieHellman key exchange object using the supplied prime and an optional specific generator.

generator 参数可以是数字、字符串或 Buffer。如果未指定 generator,则使用值 2

¥The generator argument can be a number, string, or Buffer. If generator is not specified, the value 2 is used.

如果指定了 primeEncoding,则 prime 应该是一个字符串;否则应为 BufferTypedArrayDataView

¥If primeEncoding is specified, prime is expected to be a string; otherwise a Buffer, TypedArray, or DataView is expected.

如果指定了 generatorEncoding,则 generator 应该是一个字符串;否则应为数字 BufferTypedArrayDataView

¥If generatorEncoding is specified, generator is expected to be a string; otherwise a number, Buffer, TypedArray, or DataView is expected.

crypto.createDiffieHellman(primeLength[, generator])#

创建 DiffieHellman 密钥交换对象并使用可选的特定数字 generator 生成 primeLength 位的质数。如果未指定 generator,则使用值 2

¥Creates a DiffieHellman key exchange object and generates a prime of primeLength bits using an optional specific numeric generator. If generator is not specified, the value 2 is used.

crypto.createDiffieHellmanGroup(name)#

crypto.getDiffieHellman() 的别名

¥An alias for crypto.getDiffieHellman()

crypto.createECDH(curveName)#

使用 curveName 字符串指定的预定义曲线创建椭圆曲线 Diffie-Hellman (ECDH) 密钥交换对象。使用 crypto.getCurves() 获取可用曲线名称的列表。在最近的 OpenSSL 版本中,openssl ecparam -list_curves 还将显示每个可用椭圆曲线的名称和描述。

¥Creates an Elliptic Curve Diffie-Hellman (ECDH) key exchange object using a predefined curve specified by the curveName string. Use crypto.getCurves() to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves will also display the name and description of each available elliptic curve.

crypto.createHash(algorithm[, options])#

创建并返回 Hash 对象,该对象可用于使用给定的 algorithm 生成哈希摘要。可选的 options 参数控制流的行为。对于 XOF 哈希函数(例如 'shake256'),可以使用 outputLength 选项指定所需的输出长度(以字节为单位)。

¥Creates and returns a Hash object that can be used to generate hash digests using the given algorithm. Optional options argument controls stream behavior. For XOF hash functions such as 'shake256', the outputLength option can be used to specify the desired output length in bytes.

algorithm 取决于平台上 OpenSSL 版本支持的可用算法。例如 'sha256''sha512' 等。在最近发布的 OpenSSL 中,openssl list -digest-algorithms 将显示可用的摘要算法。

¥The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list -digest-algorithms will display the available digest algorithms.

示例:生成文件的 sha256 和

¥Example: generating the sha256 sum of a file

import {
  createReadStream,
} from 'node:fs';
import { argv } from 'node:process';
const {
  createHash,
} = await import('node:crypto');

const filename = argv[2];

const hash = createHash('sha256');

const input = createReadStream(filename);
input.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = input.read();
  if (data)
    hash.update(data);
  else {
    console.log(`${hash.digest('hex')} ${filename}`);
  }
});const {
  createReadStream,
} = require('node:fs');
const {
  createHash,
} = require('node:crypto');
const { argv } = require('node:process');

const filename = argv[2];

const hash = createHash('sha256');

const input = createReadStream(filename);
input.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = input.read();
  if (data)
    hash.update(data);
  else {
    console.log(`${hash.digest('hex')} ${filename}`);
  }
});

crypto.createHmac(algorithm, key[, options])#

创建并返回使用给定的 algorithmkeyHmac 对象。可选的 options 参数控制流的行为。

¥Creates and returns an Hmac object that uses the given algorithm and key. Optional options argument controls stream behavior.

algorithm 取决于平台上 OpenSSL 版本支持的可用算法。例如 'sha256''sha512' 等。在最近发布的 OpenSSL 中,openssl list -digest-algorithms 将显示可用的摘要算法。

¥The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list -digest-algorithms will display the available digest algorithms.

key 是用于生成加密 HMAC 哈希的 HMAC 密钥。如果是 KeyObject,则其类型必须是 secret。如果是字符串,请考虑 使用字符串作为加密 API 的输入时的注意事项。如果它是从加密安全的熵源(例如 crypto.randomBytes()crypto.generateKey())获得的,则其长度不应超过 algorithm 的块大小(例如,SHA-256 的 512 位)。

¥The key is the HMAC key used to generate the cryptographic HMAC hash. If it is a KeyObject, its type must be secret. If it is a string, please consider caveats when using strings as inputs to cryptographic APIs. If it was obtained from a cryptographically secure source of entropy, such as crypto.randomBytes() or crypto.generateKey(), its length should not exceed the block size of algorithm (e.g., 512 bits for SHA-256).

示例:生成文件的 sha256 HMAC

¥Example: generating the sha256 HMAC of a file

import {
  createReadStream,
} from 'node:fs';
import { argv } from 'node:process';
const {
  createHmac,
} = await import('node:crypto');

const filename = argv[2];

const hmac = createHmac('sha256', 'a secret');

const input = createReadStream(filename);
input.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = input.read();
  if (data)
    hmac.update(data);
  else {
    console.log(`${hmac.digest('hex')} ${filename}`);
  }
});const {
  createReadStream,
} = require('node:fs');
const {
  createHmac,
} = require('node:crypto');
const { argv } = require('node:process');

const filename = argv[2];

const hmac = createHmac('sha256', 'a secret');

const input = createReadStream(filename);
input.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = input.read();
  if (data)
    hmac.update(data);
  else {
    console.log(`${hmac.digest('hex')} ${filename}`);
  }
});

crypto.createPrivateKey(key)#

创建并返回包含私钥的新密钥对象。如果 key 是字符串或 Buffer,则假定 format'pem';否则,key 必须是具有上述属性的对象。

¥Creates and returns a new key object containing a private key. If key is a string or Buffer, format is assumed to be 'pem'; otherwise, key must be an object with the properties described above.

如果私钥被加密,则必须指定 passphrase。密码的长度限制为 1024 字节。

¥If the private key is encrypted, a passphrase must be specified. The length of the passphrase is limited to 1024 bytes.

crypto.createPublicKey(key)#

创建并返回包含公钥的新密钥对象。如果 key 是字符串或 Buffer,则假定 format'pem';如果 key 是类型为 'private'KeyObject,则公钥是从给定的私钥派生的;否则,key 必须是具有上述属性的对象。

¥Creates and returns a new key object containing a public key. If key is a string or Buffer, format is assumed to be 'pem'; if key is a KeyObject with type 'private', the public key is derived from the given private key; otherwise, key must be an object with the properties described above.

如果格式为 'pem',则 'key' 也可能是 X.509 证书。

¥If the format is 'pem', the 'key' may also be an X.509 certificate.

因为公钥可以从私钥导出,所以可以传递私钥而不是公钥。在这种情况下,此函数的行为就像 crypto.createPrivateKey() 已被调用,除了返回的 KeyObject 的类型将为 'public' 并且无法从返回的 KeyObject 中提取私钥。同样,如果给定了类型为 'private'KeyObject,则新的类型为 'public'KeyObject 将被返回,并且无法从返回的对象中提取私钥。

¥Because public keys can be derived from private keys, a private key may be passed instead of a public key. In that case, this function behaves as if crypto.createPrivateKey() had been called, except that the type of the returned KeyObject will be 'public' and that the private key cannot be extracted from the returned KeyObject. Similarly, if a KeyObject with type 'private' is given, a new KeyObject with type 'public' will be returned and it will be impossible to extract the private key from the returned object.

crypto.createSecretKey(key[, encoding])#

创建并返回新的密钥对象,其中包含用于对称加密或 Hmac 的密钥。

¥Creates and returns a new key object containing a secret key for symmetric encryption or Hmac.

crypto.createSign(algorithm[, options])#

创建并返回使用给定的 algorithmSign 对象。使用 crypto.getHashes() 获取可用摘要算法的名称。可选的 options 参数控制 stream.Writable 行为。

¥Creates and returns a Sign object that uses the given algorithm. Use crypto.getHashes() to obtain the names of the available digest algorithms. Optional options argument controls the stream.Writable behavior.

在某些情况下,可以使用签名算法的名称(例如 'RSA-SHA256')而不是摘要算法来创建 Sign 实例。这将使用相应的摘要算法。这不适用于所有签名算法,例如 'ecdsa-with-SHA256',因此最好始终使用摘要算法名称。

¥In some cases, a Sign instance can be created using the name of a signature algorithm, such as 'RSA-SHA256', instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256', so it is best to always use digest algorithm names.

crypto.createVerify(algorithm[, options])#

创建并返回使用给定算法的 Verify 对象。使用 crypto.getHashes() 获取可用签名算法的名称数组。可选的 options 参数控制 stream.Writable 行为。

¥Creates and returns a Verify object that uses the given algorithm. Use crypto.getHashes() to obtain an array of names of the available signing algorithms. Optional options argument controls the stream.Writable behavior.

在某些情况下,可以使用签名算法的名称(例如 'RSA-SHA256')而不是摘要算法来创建 Verify 实例。这将使用相应的摘要算法。这不适用于所有签名算法,例如 'ecdsa-with-SHA256',因此最好始终使用摘要算法名称。

¥In some cases, a Verify instance can be created using the name of a signature algorithm, such as 'RSA-SHA256', instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256', so it is best to always use digest algorithm names.

crypto.diffieHellman(options)#

基于 privateKeypublicKey 计算 Diffie-Hellman 秘密。两个密钥必须具有相同的 asymmetricKeyType,它必须是 'dh'(对于 Diffie-Hellman)、'ec'(对于 ECDH)、'x448''x25519'(对于 ECDH-ES)之一。

¥Computes the Diffie-Hellman secret based on a privateKey and a publicKey. Both keys must have the same asymmetricKeyType, which must be one of 'dh' (for Diffie-Hellman), 'ec' (for ECDH), 'x448', or 'x25519' (for ECDH-ES).

crypto.generateKey(type, options, callback)#

  • type<string> 生成的密钥的预期用途。当前接受的值为 'hmac''aes'

    ¥type: <string> The intended use of the generated secret key. Currently accepted values are 'hmac' and 'aes'.

  • options<Object>

    • length<number> 要生成的密钥的位长度。这必须是一个大于 0 的值。

      ¥length: <number> The bit length of the key to generate. This must be a value greater than 0.

      • 如果 type'hmac',则最小长度为 8,最大长度为 231-1。如果该值不是 8 的倍数,则生成的密钥将被截断为 Math.floor(length / 8)

        ¥If type is 'hmac', the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated to Math.floor(length / 8).

      • 如果 type'aes',则长度必须是 128192256 之一。

        ¥If type is 'aes', the length must be one of 128, 192, or 256.

  • callback<Function>

异步生成给定 length 的新的随机的密钥。type 将确定将在 length 上执行哪些验证。

¥Asynchronously generates a new random secret key of the given length. The type will determine which validations will be performed on the length.

const {
  generateKey,
} = await import('node:crypto');

generateKey('hmac', { length: 512 }, (err, key) => {
  if (err) throw err;
  console.log(key.export().toString('hex'));  // 46e..........620
});const {
  generateKey,
} = require('node:crypto');

generateKey('hmac', { length: 512 }, (err, key) => {
  if (err) throw err;
  console.log(key.export().toString('hex'));  // 46e..........620
});

生成的 HMAC 密钥的大小不应超过底层哈希函数的块大小。有关详细信息,请参阅 crypto.createHmac()

¥The size of a generated HMAC key should not exceed the block size of the underlying hash function. See crypto.createHmac() for more information.

crypto.generateKeyPair(type, options, callback)#

生成给定 type 的新非对称密钥对。目前支持 RSA、RSA-PSS、DSA、EC、Ed25519、Ed448、X25519、X448、以及 DH。

¥Generates a new asymmetric key pair of the given type. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported.

如果指定了 publicKeyEncodingprivateKeyEncoding,则此函数的行为就像对其结果调用了 keyObject.export()。否则,密钥的相应部分将作为 KeyObject 返回。

¥If a publicKeyEncoding or privateKeyEncoding was specified, this function behaves as if keyObject.export() had been called on its result. Otherwise, the respective part of the key is returned as a KeyObject.

建议将公钥编码为 'spki',私钥编码为 'pkcs8',并加密以进行长期存储:

¥It is recommended to encode public keys as 'spki' and private keys as 'pkcs8' with encryption for long-term storage:

const {
  generateKeyPair,
} = await import('node:crypto');

generateKeyPair('rsa', {
  modulusLength: 4096,
  publicKeyEncoding: {
    type: 'spki',
    format: 'pem',
  },
  privateKeyEncoding: {
    type: 'pkcs8',
    format: 'pem',
    cipher: 'aes-256-cbc',
    passphrase: 'top secret',
  },
}, (err, publicKey, privateKey) => {
  // Handle errors and use the generated key pair.
});const {
  generateKeyPair,
} = require('node:crypto');

generateKeyPair('rsa', {
  modulusLength: 4096,
  publicKeyEncoding: {
    type: 'spki',
    format: 'pem',
  },
  privateKeyEncoding: {
    type: 'pkcs8',
    format: 'pem',
    cipher: 'aes-256-cbc',
    passphrase: 'top secret',
  },
}, (err, publicKey, privateKey) => {
  // Handle errors and use the generated key pair.
});

完成后,callback 将被调用,err 设置为 undefinedpublicKey / privateKey 代表生成的密钥对。

¥On completion, callback will be called with err set to undefined and publicKey / privateKey representing the generated key pair.

如果此方法作为其 util.promisify() 版本被调用,则其将为具有 publicKeyprivateKey 属性的 Object 返回 Promise

¥If this method is invoked as its util.promisify()ed version, it returns a Promise for an Object with publicKey and privateKey properties.

crypto.generateKeyPairSync(type, options)#

生成给定 type 的新非对称密钥对。目前支持 RSA、RSA-PSS、DSA、EC、Ed25519、Ed448、X25519、X448、以及 DH。

¥Generates a new asymmetric key pair of the given type. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported.

如果指定了 publicKeyEncodingprivateKeyEncoding,则此函数的行为就像对其结果调用了 keyObject.export()。否则,密钥的相应部分将作为 KeyObject 返回。

¥If a publicKeyEncoding or privateKeyEncoding was specified, this function behaves as if keyObject.export() had been called on its result. Otherwise, the respective part of the key is returned as a KeyObject.

对公钥进行编码时,建议使用 'spki'。对私钥进行编码时,建议使用强密码的 'pkcs8',并对密码进行保密。

¥When encoding public keys, it is recommended to use 'spki'. When encoding private keys, it is recommended to use 'pkcs8' with a strong passphrase, and to keep the passphrase confidential.

const {
  generateKeyPairSync,
} = await import('node:crypto');

const {
  publicKey,
  privateKey,
} = generateKeyPairSync('rsa', {
  modulusLength: 4096,
  publicKeyEncoding: {
    type: 'spki',
    format: 'pem',
  },
  privateKeyEncoding: {
    type: 'pkcs8',
    format: 'pem',
    cipher: 'aes-256-cbc',
    passphrase: 'top secret',
  },
});const {
  generateKeyPairSync,
} = require('node:crypto');

const {
  publicKey,
  privateKey,
} = generateKeyPairSync('rsa', {
  modulusLength: 4096,
  publicKeyEncoding: {
    type: 'spki',
    format: 'pem',
  },
  privateKeyEncoding: {
    type: 'pkcs8',
    format: 'pem',
    cipher: 'aes-256-cbc',
    passphrase: 'top secret',
  },
});

返回值 { publicKey, privateKey } 表示生成的密钥对。选择 PEM 编码时,相应的密钥将是字符串,否则它将是包含编码为 DER 的数据的缓冲区。

¥The return value { publicKey, privateKey } represents the generated key pair. When PEM encoding was selected, the respective key will be a string, otherwise it will be a buffer containing the data encoded as DER.

crypto.generateKeySync(type, options)#

  • type<string> 生成的密钥的预期用途。当前接受的值为 'hmac''aes'

    ¥type: <string> The intended use of the generated secret key. Currently accepted values are 'hmac' and 'aes'.

  • options<Object>

    • length<number> 要生成的密钥的位长度。

      ¥length: <number> The bit length of the key to generate.

      • 如果 type'hmac',则最小长度为 8,最大长度为 231-1。如果该值不是 8 的倍数,则生成的密钥将被截断为 Math.floor(length / 8)

        ¥If type is 'hmac', the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated to Math.floor(length / 8).

      • 如果 type'aes',则长度必须是 128192256 之一。

        ¥If type is 'aes', the length must be one of 128, 192, or 256.

  • 返回:<KeyObject>

    ¥Returns: <KeyObject>

同步生成给定 length 的新的随机的密钥。type 将确定将在 length 上执行哪些验证。

¥Synchronously generates a new random secret key of the given length. The type will determine which validations will be performed on the length.

const {
  generateKeySync,
} = await import('node:crypto');

const key = generateKeySync('hmac', { length: 512 });
console.log(key.export().toString('hex'));  // e89..........41econst {
  generateKeySync,
} = require('node:crypto');

const key = generateKeySync('hmac', { length: 512 });
console.log(key.export().toString('hex'));  // e89..........41e

生成的 HMAC 密钥的大小不应超过底层哈希函数的块大小。有关详细信息,请参阅 crypto.createHmac()

¥The size of a generated HMAC key should not exceed the block size of the underlying hash function. See crypto.createHmac() for more information.

crypto.generatePrime(size[, options[, callback]])#

生成 size 位的伪随机素数。

¥Generates a pseudorandom prime of size bits.

如果 options.safetrue,素数将是一个安全素数 - 也就是说,(prime - 1) / 2 也将是素数。

¥If options.safe is true, the prime will be a safe prime -- that is, (prime - 1) / 2 will also be a prime.

options.addoptions.rem 参数可用于强制执行其他要求,例如,对于 Diffie-Hellman:

¥The options.add and options.rem parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman:

  • 如果 options.addoptions.rem 都设置,素数将满足条件 prime % add = rem

    ¥If options.add and options.rem are both set, the prime will satisfy the condition that prime % add = rem.

  • 如果只设置了 options.addoptions.safe 不是 true,素数将满足条件 prime % add = 1

    ¥If only options.add is set and options.safe is not true, the prime will satisfy the condition that prime % add = 1.

  • 如果只设置了 options.add,而将 options.safe 设置为 true,则素数将满足条件 prime % add = 3。这是必要的,因为 options.add > 2prime % add = 1 会与 options.safe 强制执行的条件相矛盾。

    ¥If only options.add is set and options.safe is set to true, the prime will instead satisfy the condition that prime % add = 3. This is necessary because prime % add = 1 for options.add > 2 would contradict the condition enforced by options.safe.

  • 如果未给出 options.add,则忽略 options.rem

    ¥options.rem is ignored if options.add is not given.

如果以 ArrayBufferSharedArrayBufferTypedArrayBufferDataView 形式给出,则 options.addoptions.rem 都必须编码为大端序列。

¥Both options.add and options.rem must be encoded as big-endian sequences if given as an ArrayBuffer, SharedArrayBuffer, TypedArray, Buffer, or DataView.

默认情况下,素数被编码为 <ArrayBuffer> 中八位字节的大端序列。如果 bigint 选项为 true,则提供 <bigint>

¥By default, the prime is encoded as a big-endian sequence of octets in an <ArrayBuffer>. If the bigint option is true, then a <bigint> is provided.

crypto.generatePrimeSync(size[, options])#

生成 size 位的伪随机素数。

¥Generates a pseudorandom prime of size bits.

如果 options.safetrue,素数将是一个安全素数 - 也就是说,(prime - 1) / 2 也将是素数。

¥If options.safe is true, the prime will be a safe prime -- that is, (prime - 1) / 2 will also be a prime.

options.addoptions.rem 参数可用于强制执行其他要求,例如,对于 Diffie-Hellman:

¥The options.add and options.rem parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman:

  • 如果 options.addoptions.rem 都设置,素数将满足条件 prime % add = rem

    ¥If options.add and options.rem are both set, the prime will satisfy the condition that prime % add = rem.

  • 如果只设置了 options.addoptions.safe 不是 true,素数将满足条件 prime % add = 1

    ¥If only options.add is set and options.safe is not true, the prime will satisfy the condition that prime % add = 1.

  • 如果只设置了 options.add,而将 options.safe 设置为 true,则素数将满足条件 prime % add = 3。这是必要的,因为 options.add > 2prime % add = 1 会与 options.safe 强制执行的条件相矛盾。

    ¥If only options.add is set and options.safe is set to true, the prime will instead satisfy the condition that prime % add = 3. This is necessary because prime % add = 1 for options.add > 2 would contradict the condition enforced by options.safe.

  • 如果未给出 options.add,则忽略 options.rem

    ¥options.rem is ignored if options.add is not given.

如果以 ArrayBufferSharedArrayBufferTypedArrayBufferDataView 形式给出,则 options.addoptions.rem 都必须编码为大端序列。

¥Both options.add and options.rem must be encoded as big-endian sequences if given as an ArrayBuffer, SharedArrayBuffer, TypedArray, Buffer, or DataView.

默认情况下,素数被编码为 <ArrayBuffer> 中八位字节的大端序列。如果 bigint 选项为 true,则提供 <bigint>

¥By default, the prime is encoded as a big-endian sequence of octets in an <ArrayBuffer>. If the bigint option is true, then a <bigint> is provided.

crypto.getCipherInfo(nameOrNid[, options])#

  • nameOrNid<string> | <number> 要查询的密码的名称或 nid。

    ¥nameOrNid: <string> | <number> The name or nid of the cipher to query.

  • options<Object>

    • keyLength<number> 测试密钥长度。

      ¥keyLength: <number> A test key length.

    • ivLength<number> 测试 IV 长度。

      ¥ivLength: <number> A test IV length.

  • 返回:<Object>

    ¥Returns: <Object>

    • name <string> 密码的名称

      ¥name <string> The name of the cipher

    • nid <number> 密码的 nid

      ¥nid <number> The nid of the cipher

    • blockSize <number> 密码的块大小(以字节为单位)。当 mode'stream' 时,此属性被省略。

      ¥blockSize <number> The block size of the cipher in bytes. This property is omitted when mode is 'stream'.

    • ivLength <number> 以字节为单位的预期或默认初始化向量长度。如果密码不使用初始化向量,则省略此属性。

      ¥ivLength <number> The expected or default initialization vector length in bytes. This property is omitted if the cipher does not use an initialization vector.

    • keyLength <number> 以字节为单位的预期或默认密钥长度。

      ¥keyLength <number> The expected or default key length in bytes.

    • mode <string> 密码模式。'cbc''ccm''cfb''ctr''ecb''gcm''ocb''ofb''stream''wrap''xts' 之一。

      ¥mode <string> The cipher mode. One of 'cbc', 'ccm', 'cfb', 'ctr', 'ecb', 'gcm', 'ocb', 'ofb', 'stream', 'wrap', 'xts'.

返回有关给定密码的信息。

¥Returns information about a given cipher.

一些密码接受可变长度的密钥和初始化向量。默认情况下,crypto.getCipherInfo() 方法将返回这些密码的默认值。要测试给定的密钥长度或 iv 长度对于给定的密码是否可接受,请使用 keyLengthivLength 选项。如果给定的值不可接受,则返回 undefined

¥Some ciphers accept variable length keys and initialization vectors. By default, the crypto.getCipherInfo() method will return the default values for these ciphers. To test if a given key length or iv length is acceptable for given cipher, use the keyLength and ivLength options. If the given values are unacceptable, undefined will be returned.

crypto.getCiphers()#

  • 返回:<string[]> 包含支持的密码算法名称的数组。

    ¥Returns: <string[]> An array with the names of the supported cipher algorithms.

const {
  getCiphers,
} = await import('node:crypto');

console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]const {
  getCiphers,
} = require('node:crypto');

console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]

crypto.getCurves()#

  • 返回:<string[]> 包含支持的椭圆曲线名称的数组。

    ¥Returns: <string[]> An array with the names of the supported elliptic curves.

const {
  getCurves,
} = await import('node:crypto');

console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]const {
  getCurves,
} = require('node:crypto');

console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]

crypto.getDiffieHellman(groupName)#

创建预定义的 DiffieHellmanGroup 密钥交换对象。DiffieHellmanGroup 的文档中列出了支持的组。

¥Creates a predefined DiffieHellmanGroup key exchange object. The supported groups are listed in the documentation for DiffieHellmanGroup.

返回的对象模仿 crypto.createDiffieHellman() 创建的对象的接口,但不允许更改键(例如,使用 diffieHellman.setPublicKey())。使用这种方法的优点是双方不必事先生成或交换组模数,既节省了处理器时间又节省了通信时间。

¥The returned object mimics the interface of objects created by crypto.createDiffieHellman(), but will not allow changing the keys (with diffieHellman.setPublicKey(), for example). The advantage of using this method is that the parties do not have to generate nor exchange a group modulus beforehand, saving both processor and communication time.

示例(获取共享密钥):

¥Example (obtaining a shared secret):

const {
  getDiffieHellman,
} = await import('node:crypto');
const alice = getDiffieHellman('modp14');
const bob = getDiffieHellman('modp14');

alice.generateKeys();
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);const {
  getDiffieHellman,
} = require('node:crypto');

const alice = getDiffieHellman('modp14');
const bob = getDiffieHellman('modp14');

alice.generateKeys();
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);

crypto.getFips()#

  • 返回:<number> 当且仅当当前正在使用符合 FIPS 的加密提供商时为 1,否则为 0。未来的语义化主版本可能会将此 API 的返回类型更改为 <boolean>

    ¥Returns: <number> 1 if and only if a FIPS compliant crypto provider is currently in use, 0 otherwise. A future semver-major release may change the return type of this API to a <boolean>.

crypto.getHashes()#

  • 返回:<string[]> 支持的哈希算法名称的数组,例如 'RSA-SHA256'。哈希算法也称为 "digest" 算法。

    ¥Returns: <string[]> An array of the names of the supported hash algorithms, such as 'RSA-SHA256'. Hash algorithms are also called "digest" algorithms.

const {
  getHashes,
} = await import('node:crypto');

console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]const {
  getHashes,
} = require('node:crypto');

console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]

crypto.getRandomValues(typedArray)#

crypto.webcrypto.getRandomValues() 的便捷别名。此实现不符合 Web 加密规范,要编写与 web 兼容的代码,则改用 crypto.webcrypto.getRandomValues()

¥A convenient alias for crypto.webcrypto.getRandomValues(). This implementation is not compliant with the Web Crypto spec, to write web-compatible code use crypto.webcrypto.getRandomValues() instead.

crypto.hkdf(digest, ikm, salt, info, keylen, callback)#

HKDF 是 RFC 5869 中定义的简单密钥派生函数。给定的 ikmsaltinfodigest 一起使用以导出 keylen 字节的密钥。

¥HKDF is a simple key derivation function defined in RFC 5869. The given ikm, salt and info are used with the digest to derive a key of keylen bytes.

使用两个参数调用提供的 callback 函数:errderivedKey。如果派生密钥时发生错误,err 将被设置;否则 err 将是 null。成功生成的 derivedKey 将作为 <ArrayBuffer> 传给回调。如果任何输入参数指定了无效的值或类型,则会抛出错误。

¥The supplied callback function is called with two arguments: err and derivedKey. If an errors occurs while deriving the key, err will be set; otherwise err will be null. The successfully generated derivedKey will be passed to the callback as an <ArrayBuffer>. An error will be thrown if any of the input arguments specify invalid values or types.

import { Buffer } from 'node:buffer';
const {
  hkdf,
} = await import('node:crypto');

hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
  if (err) throw err;
  console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'
});const {
  hkdf,
} = require('node:crypto');
const { Buffer } = require('node:buffer');

hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
  if (err) throw err;
  console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'
});

crypto.hkdfSync(digest, ikm, salt, info, keylen)#

提供 RFC 5869 中定义的同步 HKDF 密钥派生函数。给定的 ikmsaltinfodigest 一起使用以导出 keylen 字节的密钥。

¥Provides a synchronous HKDF key derivation function as defined in RFC 5869. The given ikm, salt and info are used with the digest to derive a key of keylen bytes.

成功生成的 derivedKey 将作为 <ArrayBuffer> 返回。

¥The successfully generated derivedKey will be returned as an <ArrayBuffer>.

如果任何输入参数指定无效值或类型,或者无法生成派生密钥,则会抛出错误。

¥An error will be thrown if any of the input arguments specify invalid values or types, or if the derived key cannot be generated.

import { Buffer } from 'node:buffer';
const {
  hkdfSync,
} = await import('node:crypto');

const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'const {
  hkdfSync,
} = require('node:crypto');
const { Buffer } = require('node:buffer');

const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'

crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)#

提供异步基于密码的密钥派生函数 2 (PBKDF2) 实现。应用由 digest 指定的选定 HMAC 摘要算法以从 passwordsaltiterations 导出请求字节长度 (keylen) 的密钥。

¥Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest is applied to derive a key of the requested byte length (keylen) from the password, salt and iterations.

使用两个参数调用提供的 callback 函数:errderivedKey。如果派生密钥时发生错误,err 将被设置;否则 err 将是 null。默认情况下,成功生成的 derivedKey 将作为 Buffer 传给回调。如果任何输入参数指定了无效的值或类型,则会抛出错误。

¥The supplied callback function is called with two arguments: err and derivedKey. If an error occurs while deriving the key, err will be set; otherwise err will be null. By default, the successfully generated derivedKey will be passed to the callback as a Buffer. An error will be thrown if any of the input arguments specify invalid values or types.

iterations 参数必须是尽可能高的数字。迭代次数越多,派生密钥就越安全,但需要更长的时间才能完成。

¥The iterations argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.

salt 应该尽可能唯一。建议盐是随机的,长度至少为 16 字节。详见 NIST SP 800-132

¥The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

passwordsalt 传递字符串时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

const {
  pbkdf2,
} = await import('node:crypto');

pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
});const {
  pbkdf2,
} = require('node:crypto');

pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
});

可以使用 crypto.getHashes() 检索支持的摘要函数数组。

¥An array of supported digest functions can be retrieved using crypto.getHashes().

该 API 使用 libuv 的线程池,这对某些应用可能具有令人惊讶的负面性能影响;有关详细信息,请参阅 UV_THREADPOOL_SIZE 文档。

¥This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE documentation for more information.

crypto.pbkdf2Sync(password, salt, iterations, keylen, digest)#

提供同步的基于密码的密钥派生函数 2 (PBKDF2) 实现。应用由 digest 指定的选定 HMAC 摘要算法以从 passwordsaltiterations 导出请求字节长度 (keylen) 的密钥。

¥Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest is applied to derive a key of the requested byte length (keylen) from the password, salt and iterations.

如果发生错误,将抛出 Error,否则派生密钥将作为 Buffer 返回。

¥If an error occurs an Error will be thrown, otherwise the derived key will be returned as a Buffer.

iterations 参数必须是尽可能高的数字。迭代次数越多,派生密钥就越安全,但需要更长的时间才能完成。

¥The iterations argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.

salt 应该尽可能唯一。建议盐是随机的,长度至少为 16 字节。详见 NIST SP 800-132

¥The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

passwordsalt 传递字符串时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

const {
  pbkdf2Sync,
} = await import('node:crypto');

const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
console.log(key.toString('hex'));  // '3745e48...08d59ae'const {
  pbkdf2Sync,
} = require('node:crypto');

const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
console.log(key.toString('hex'));  // '3745e48...08d59ae'

可以使用 crypto.getHashes() 检索支持的摘要函数数组。

¥An array of supported digest functions can be retrieved using crypto.getHashes().

crypto.privateDecrypt(privateKey, buffer)#

privateKey 解密 bufferbuffer 之前使用相应的公钥加密,例如使用 crypto.publicEncrypt()

¥Decrypts buffer with privateKey. buffer was previously encrypted using the corresponding public key, for example using crypto.publicEncrypt().

如果 privateKey 不是 KeyObject,则此函数的行为就像将 privateKey 传给 crypto.createPrivateKey() 一样。如果是对象,则可以传入 padding 属性。否则,该函数使用 RSA_PKCS1_OAEP_PADDING

¥If privateKey is not a KeyObject, this function behaves as if privateKey had been passed to crypto.createPrivateKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_OAEP_PADDING.

crypto.privateEncrypt(privateKey, buffer)#

privateKey 加密 buffer。返回的数据可以使用相应的公钥解密,例如使用 crypto.publicDecrypt()

¥Encrypts buffer with privateKey. The returned data can be decrypted using the corresponding public key, for example using crypto.publicDecrypt().

如果 privateKey 不是 KeyObject,则此函数的行为就像将 privateKey 传给 crypto.createPrivateKey() 一样。如果是对象,则可以传入 padding 属性。否则,该函数使用 RSA_PKCS1_PADDING

¥If privateKey is not a KeyObject, this function behaves as if privateKey had been passed to crypto.createPrivateKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_PADDING.

crypto.publicDecrypt(key, buffer)#

使用 key.buffer 解密 buffer 之前使用相应的私钥加密,例如使用 crypto.privateEncrypt()

¥Decrypts buffer with key.buffer was previously encrypted using the corresponding private key, for example using crypto.privateEncrypt().

如果 key 不是 KeyObject,则此函数的行为就像将 key 传给 crypto.createPublicKey() 一样。如果是对象,则可以传入 padding 属性。否则,该函数使用 RSA_PKCS1_PADDING

¥If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPublicKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_PADDING.

由于 RSA 公钥可以从私钥派生,因此可以传入私钥而不是公钥。

¥Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.

crypto.publicEncrypt(key, buffer)#

key 加密 buffer 的内容,并返回带有加密内容的新 Buffer。返回的数据可以使用相应的私钥解密,例如使用 crypto.privateDecrypt()

¥Encrypts the content of buffer with key and returns a new Buffer with encrypted content. The returned data can be decrypted using the corresponding private key, for example using crypto.privateDecrypt().

如果 key 不是 KeyObject,则此函数的行为就像将 key 传给 crypto.createPublicKey() 一样。如果是对象,则可以传入 padding 属性。否则,该函数使用 RSA_PKCS1_OAEP_PADDING

¥If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPublicKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_OAEP_PADDING.

由于 RSA 公钥可以从私钥派生,因此可以传入私钥而不是公钥。

¥Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.

crypto.randomBytes(size[, callback])#

  • size <number> 要生成的字节数。size 不得大于 2**31 - 1

    ¥size <number> The number of bytes to generate. The size must not be larger than 2**31 - 1.

  • callback <Function>

  • 返回:如果未提供 callback 函数,则为 <Buffer>

    ¥Returns: <Buffer> if the callback function is not provided.

生成加密强伪随机数据。size 参数是数字,指示要生成的字节数。

¥Generates cryptographically strong pseudorandom data. The size argument is a number indicating the number of bytes to generate.

如果提供了 callback 函数,则异步生成字节并使用两个参数调用 callback 函数:errbuf。如果发生错误,err 将是一个 Error 对象;否则为 nullbuf 参数是包含生成字节的 Buffer

¥If a callback function is provided, the bytes are generated asynchronously and the callback function is invoked with two arguments: err and buf. If an error occurs, err will be an Error object; otherwise it is null. The buf argument is a Buffer containing the generated bytes.

// Asynchronous
const {
  randomBytes,
} = await import('node:crypto');

randomBytes(256, (err, buf) => {
  if (err) throw err;
  console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
});// Asynchronous
const {
  randomBytes,
} = require('node:crypto');

randomBytes(256, (err, buf) => {
  if (err) throw err;
  console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
});

如果未提供 callback 函数,则同步生成随机字节并作为 Buffer 返回。如果生成字节出现问题,则会抛出错误。

¥If the callback function is not provided, the random bytes are generated synchronously and returned as a Buffer. An error will be thrown if there is a problem generating the bytes.

// Synchronous
const {
  randomBytes,
} = await import('node:crypto');

const buf = randomBytes(256);
console.log(
  `${buf.length} bytes of random data: ${buf.toString('hex')}`);// Synchronous
const {
  randomBytes,
} = require('node:crypto');

const buf = randomBytes(256);
console.log(
  `${buf.length} bytes of random data: ${buf.toString('hex')}`);

crypto.randomBytes() 方法将不会完成,直到有足够的可用熵。这通常不会超过几毫秒。可以想象,生成随机字节的唯一时间可能会阻塞更长的时间是在启动之后,此时整个系统的熵仍然很低。

¥The crypto.randomBytes() method will not complete until there is sufficient entropy available. This should normally never take longer than a few milliseconds. The only time when generating the random bytes may conceivably block for a longer period of time is right after boot, when the whole system is still low on entropy.

该 API 使用 libuv 的线程池,这对某些应用可能具有令人惊讶的负面性能影响;有关详细信息,请参阅 UV_THREADPOOL_SIZE 文档。

¥This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE documentation for more information.

crypto.randomBytes() 的异步版本是在单个线程池请求中执行的。为了最大限度地减少线程池任务长度变化,在执行客户端请求时将大型 randomBytes 请求分区。

¥The asynchronous version of crypto.randomBytes() is carried out in a single threadpool request. To minimize threadpool task length variation, partition large randomBytes requests when doing so as part of fulfilling a client request.

crypto.randomFillSync(buffer[, offset][, size])#

crypto.randomFill() 的同步版本。

¥Synchronous version of crypto.randomFill().

import { Buffer } from 'node:buffer';
const { randomFillSync } = await import('node:crypto');

const buf = Buffer.alloc(10);
console.log(randomFillSync(buf).toString('hex'));

randomFillSync(buf, 5);
console.log(buf.toString('hex'));

// The above is equivalent to the following:
randomFillSync(buf, 5, 5);
console.log(buf.toString('hex'));const { randomFillSync } = require('node:crypto');
const { Buffer } = require('node:buffer');

const buf = Buffer.alloc(10);
console.log(randomFillSync(buf).toString('hex'));

randomFillSync(buf, 5);
console.log(buf.toString('hex'));

// The above is equivalent to the following:
randomFillSync(buf, 5, 5);
console.log(buf.toString('hex'));

任何 ArrayBufferTypedArrayDataView 实例都可以作为 buffer 传入。

¥Any ArrayBuffer, TypedArray or DataView instance may be passed as buffer.

import { Buffer } from 'node:buffer';
const { randomFillSync } = await import('node:crypto');

const a = new Uint32Array(10);
console.log(Buffer.from(randomFillSync(a).buffer,
                        a.byteOffset, a.byteLength).toString('hex'));

const b = new DataView(new ArrayBuffer(10));
console.log(Buffer.from(randomFillSync(b).buffer,
                        b.byteOffset, b.byteLength).toString('hex'));

const c = new ArrayBuffer(10);
console.log(Buffer.from(randomFillSync(c)).toString('hex'));const { randomFillSync } = require('node:crypto');
const { Buffer } = require('node:buffer');

const a = new Uint32Array(10);
console.log(Buffer.from(randomFillSync(a).buffer,
                        a.byteOffset, a.byteLength).toString('hex'));

const b = new DataView(new ArrayBuffer(10));
console.log(Buffer.from(randomFillSync(b).buffer,
                        b.byteOffset, b.byteLength).toString('hex'));

const c = new ArrayBuffer(10);
console.log(Buffer.from(randomFillSync(c)).toString('hex'));

crypto.randomFill(buffer[, offset][, size], callback)#

此函数类似于 crypto.randomBytes(),但要求第一个参数是将被填充的 Buffer。它还要求传入回调。

¥This function is similar to crypto.randomBytes() but requires the first argument to be a Buffer that will be filled. It also requires that a callback is passed in.

如果未提供 callback 函数,则会抛出错误。

¥If the callback function is not provided, an error will be thrown.

import { Buffer } from 'node:buffer';
const { randomFill } = await import('node:crypto');

const buf = Buffer.alloc(10);
randomFill(buf, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

randomFill(buf, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

// The above is equivalent to the following:
randomFill(buf, 5, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});const { randomFill } = require('node:crypto');
const { Buffer } = require('node:buffer');

const buf = Buffer.alloc(10);
randomFill(buf, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

randomFill(buf, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

// The above is equivalent to the following:
randomFill(buf, 5, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

任何 ArrayBufferTypedArrayDataView 实例都可以作为 buffer 传入。

¥Any ArrayBuffer, TypedArray, or DataView instance may be passed as buffer.

虽然这包括 Float32ArrayFloat64Array 的实例,但不应使用此函数生成随机浮点数。结果可能包含 +Infinity-InfinityNaN,即使数组只包含有限数字,它们也不是从均匀随机分布中抽取的,并且没有有意义的下限或上限。

¥While this includes instances of Float32Array and Float64Array, this function should not be used to generate random floating-point numbers. The result may contain +Infinity, -Infinity, and NaN, and even if the array contains finite numbers only, they are not drawn from a uniform random distribution and have no meaningful lower or upper bounds.

import { Buffer } from 'node:buffer';
const { randomFill } = await import('node:crypto');

const a = new Uint32Array(10);
randomFill(a, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
    .toString('hex'));
});

const b = new DataView(new ArrayBuffer(10));
randomFill(b, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
    .toString('hex'));
});

const c = new ArrayBuffer(10);
randomFill(c, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf).toString('hex'));
});const { randomFill } = require('node:crypto');
const { Buffer } = require('node:buffer');

const a = new Uint32Array(10);
randomFill(a, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
    .toString('hex'));
});

const b = new DataView(new ArrayBuffer(10));
randomFill(b, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
    .toString('hex'));
});

const c = new ArrayBuffer(10);
randomFill(c, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf).toString('hex'));
});

该 API 使用 libuv 的线程池,这对某些应用可能具有令人惊讶的负面性能影响;有关详细信息,请参阅 UV_THREADPOOL_SIZE 文档。

¥This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE documentation for more information.

crypto.randomFill() 的异步版本是在单个线程池请求中执行的。为了最大限度地减少线程池任务长度变化,在执行客户端请求时将大型 randomFill 请求分区。

¥The asynchronous version of crypto.randomFill() is carried out in a single threadpool request. To minimize threadpool task length variation, partition large randomFill requests when doing so as part of fulfilling a client request.

crypto.randomInt([min, ]max[, callback])#

  • min <integer> 随机范围的开始(包括)。默认值:0

    ¥min <integer> Start of random range (inclusive). Default: 0.

  • max <integer> 随机范围的结束(不包括)。

    ¥max <integer> End of random range (exclusive).

  • callback <Function> function(err, n) {}

返回随机整数 n,使得 min <= n < max。此实现避免了 模偏差

¥Return a random integer n such that min <= n < max. This implementation avoids modulo bias.

范围 (max - min) 必须小于 248minmax 必须是 安全整数

¥The range (max - min) must be less than 248. min and max must be safe integers.

如果不提供 callback 函数,则同步生成随机整数。

¥If the callback function is not provided, the random integer is generated synchronously.

// Asynchronous
const {
  randomInt,
} = await import('node:crypto');

randomInt(3, (err, n) => {
  if (err) throw err;
  console.log(`Random number chosen from (0, 1, 2): ${n}`);
});// Asynchronous
const {
  randomInt,
} = require('node:crypto');

randomInt(3, (err, n) => {
  if (err) throw err;
  console.log(`Random number chosen from (0, 1, 2): ${n}`);
});
// Synchronous
const {
  randomInt,
} = await import('node:crypto');

const n = randomInt(3);
console.log(`Random number chosen from (0, 1, 2): ${n}`);// Synchronous
const {
  randomInt,
} = require('node:crypto');

const n = randomInt(3);
console.log(`Random number chosen from (0, 1, 2): ${n}`);
// With `min` argument
const {
  randomInt,
} = await import('node:crypto');

const n = randomInt(1, 7);
console.log(`The dice rolled: ${n}`);// With `min` argument
const {
  randomInt,
} = require('node:crypto');

const n = randomInt(1, 7);
console.log(`The dice rolled: ${n}`);

crypto.randomUUID([options])#

  • options <Object>

    • disableEntropyCache <boolean> 默认情况下,为了提高性能,Node.js 会生成并缓存足够多的随机数据,以生成多达 128 个随机 UUID。要在不使用缓存的情况下生成 UUID,请将 disableEntropyCache 设置为 true。默认值:false

      ¥disableEntropyCache <boolean> By default, to improve performance, Node.js generates and caches enough random data to generate up to 128 random UUIDs. To generate a UUID without using the cache, set disableEntropyCache to true. Default: false.

  • 返回:<string>

    ¥Returns: <string>

生成一个随机的 RFC 4122 版本 4 UUID。UUID 是使用加密伪随机数生成器生成的。

¥Generates a random RFC 4122 version 4 UUID. The UUID is generated using a cryptographic pseudorandom number generator.

crypto.scrypt(password, salt, keylen[, options], callback)#

  • password <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>

  • salt <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>

  • keylen <number>

  • options <Object>

    • cost <number> CPU/内存成本参数。必须是大于 1 的 2 的幂。默认值:16384

      ¥cost <number> CPU/memory cost parameter. Must be a power of two greater than one. Default: 16384.

    • blockSize <number> 块大小参数。默认值:8

      ¥blockSize <number> Block size parameter. Default: 8.

    • parallelization <number> 并行化参数。默认值:1

      ¥parallelization <number> Parallelization parameter. Default: 1.

    • N <number> cost 的别名。只能指定两者之一。

      ¥N <number> Alias for cost. Only one of both may be specified.

    • r <number> blockSize 的别名。只能指定两者之一。

      ¥r <number> Alias for blockSize. Only one of both may be specified.

    • p <number> parallelization 的别名。只能指定两者之一。

      ¥p <number> Alias for parallelization. Only one of both may be specified.

    • maxmem <number> 内存上限。当(大约)128 * N * r > maxmem 时,则为错误。默认值:32 * 1024 * 1024

      ¥maxmem <number> Memory upper bound. It is an error when (approximately) 128 * N * r > maxmem. Default: 32 * 1024 * 1024.

  • callback <Function>

提供异步 scrypt 实现。Scrypt 是一个基于密码的密钥派生函数,其设计在计算和内存方面都非常昂贵,以使蛮力攻击毫无回报。

¥Provides an asynchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.

salt 应该尽可能唯一。建议盐是随机的,长度至少为 16 字节。详见 NIST SP 800-132

¥The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

passwordsalt 传递字符串时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

使用两个参数调用 callback 函数:errderivedKey。当密钥派生失败时 err 为异常对象,否则 errnullderivedKey 作为 Buffer 传给回调。

¥The callback function is called with two arguments: err and derivedKey. err is an exception object when key derivation fails, otherwise err is null. derivedKey is passed to the callback as a Buffer.

当任何输入参数指定无效值或类型时,将抛出异常。

¥An exception is thrown when any of the input arguments specify invalid values or types.

const {
  scrypt,
} = await import('node:crypto');

// Using the factory defaults.
scrypt('password', 'salt', 64, (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
});
// Using a custom N parameter. Must be a power of two.
scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...aa39b34'
});const {
  scrypt,
} = require('node:crypto');

// Using the factory defaults.
scrypt('password', 'salt', 64, (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
});
// Using a custom N parameter. Must be a power of two.
scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...aa39b34'
});

crypto.scryptSync(password, salt, keylen[, options])#

  • password <string> | <Buffer> | <TypedArray> | <DataView>

  • salt <string> | <Buffer> | <TypedArray> | <DataView>

  • keylen <number>

  • options <Object>

    • cost <number> CPU/内存成本参数。必须是大于 1 的 2 的幂。默认值:16384

      ¥cost <number> CPU/memory cost parameter. Must be a power of two greater than one. Default: 16384.

    • blockSize <number> 块大小参数。默认值:8

      ¥blockSize <number> Block size parameter. Default: 8.

    • parallelization <number> 并行化参数。默认值:1

      ¥parallelization <number> Parallelization parameter. Default: 1.

    • N <number> cost 的别名。只能指定两者之一。

      ¥N <number> Alias for cost. Only one of both may be specified.

    • r <number> blockSize 的别名。只能指定两者之一。

      ¥r <number> Alias for blockSize. Only one of both may be specified.

    • p <number> parallelization 的别名。只能指定两者之一。

      ¥p <number> Alias for parallelization. Only one of both may be specified.

    • maxmem <number> 内存上限。当(大约)128 * N * r > maxmem 时,则为错误。默认值:32 * 1024 * 1024

      ¥maxmem <number> Memory upper bound. It is an error when (approximately) 128 * N * r > maxmem. Default: 32 * 1024 * 1024.

  • 返回:<Buffer>

    ¥Returns: <Buffer>

提供同步 scrypt 实现。Scrypt 是一个基于密码的密钥派生函数,其设计在计算和内存方面都非常昂贵,以使蛮力攻击毫无回报。

¥Provides a synchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.

salt 应该尽可能唯一。建议盐是随机的,长度至少为 16 字节。详见 NIST SP 800-132

¥The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

passwordsalt 传递字符串时,请考虑 使用字符串作为加密 API 的输入时的注意事项

¥When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

当密钥派生失败时抛出异常,否则派生的密钥作为 Buffer 返回。

¥An exception is thrown when key derivation fails, otherwise the derived key is returned as a Buffer.

当任何输入参数指定无效值或类型时,将抛出异常。

¥An exception is thrown when any of the input arguments specify invalid values or types.

const {
  scryptSync,
} = await import('node:crypto');
// Using the factory defaults.

const key1 = scryptSync('password', 'salt', 64);
console.log(key1.toString('hex'));  // '3745e48...08d59ae'
// Using a custom N parameter. Must be a power of two.
const key2 = scryptSync('password', 'salt', 64, { N: 1024 });
console.log(key2.toString('hex'));  // '3745e48...aa39b34'const {
  scryptSync,
} = require('node:crypto');
// Using the factory defaults.

const key1 = scryptSync('password', 'salt', 64);
console.log(key1.toString('hex'));  // '3745e48...08d59ae'
// Using a custom N parameter. Must be a power of two.
const key2 = scryptSync('password', 'salt', 64, { N: 1024 });
console.log(key2.toString('hex'));  // '3745e48...aa39b34'

crypto.secureHeapUsed()#

  • 返回:<Object>

    ¥Returns: <Object>

    • total <number> 使用 --secure-heap=n 命令行标志指定的总分配安全堆大小。

      ¥total <number> The total allocated secure heap size as specified using the --secure-heap=n command-line flag.

    • min <number> 使用 --secure-heap-min 命令行标志指定的安全堆的最小分配。

      ¥min <number> The minimum allocation from the secure heap as specified using the --secure-heap-min command-line flag.

    • used <number> 当前从安全堆分配的总字节数。

      ¥used <number> The total number of bytes currently allocated from the secure heap.

    • utilization <number> usedtotal 分配字节的计算比率。

      ¥utilization <number> The calculated ratio of used to total allocated bytes.

crypto.setEngine(engine[, flags])#

为部分或所有 OpenSSL 功能(由标志选择)加载并设置 engine

¥Load and set the engine for some or all OpenSSL functions (selected by flags).

engine 可以是 id 或引擎共享库的路径。

¥engine could be either an id or a path to the engine's shared library.

可选的 flags 参数默认使用 ENGINE_METHOD_ALLflags 是采用以下标志之一或混合的位字段(在 crypto.constants 中定义):

¥The optional flags argument uses ENGINE_METHOD_ALL by default. The flags is a bit field taking one of or a mix of the following flags (defined in crypto.constants):

  • crypto.constants.ENGINE_METHOD_RSA

  • crypto.constants.ENGINE_METHOD_DSA

  • crypto.constants.ENGINE_METHOD_DH

  • crypto.constants.ENGINE_METHOD_RAND

  • crypto.constants.ENGINE_METHOD_EC

  • crypto.constants.ENGINE_METHOD_CIPHERS

  • crypto.constants.ENGINE_METHOD_DIGESTS

  • crypto.constants.ENGINE_METHOD_PKEY_METHS

  • crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS

  • crypto.constants.ENGINE_METHOD_ALL

  • crypto.constants.ENGINE_METHOD_NONE

crypto.setFips(bool)#

在启用 FIPS 的 Node.js 构建中启用符合 FIPS 的加密提供程序。如果 FIPS 模式不可用,则会抛出错误。

¥Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available.

crypto.sign(algorithm, data, key[, callback])#

使用给定的私钥和算法计算并返回 data 的签名。如果 algorithmnullundefined,则算法取决于密钥类型(尤其是 Ed25519 和 Ed448)。

¥Calculates and returns the signature for data using the given private key and algorithm. If algorithm is null or undefined, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448).

如果 key 不是 KeyObject,则此函数的行为就像将 key 传给 crypto.createPrivateKey() 一样。如果是对象,则可以传入以下额外属性:

¥If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPrivateKey(). If it is an object, the following additional properties can be passed:

  • dsaEncoding <string> 对于 DSA 和 ECDSA,此选项指定生成签名的格式。它可以是以下之一:

    ¥dsaEncoding <string> For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:

    • 'der'(默认):DER 编码的 ASN.1 签名结构编码 (r, s)

      ¥'der' (default): DER-encoded ASN.1 signature structure encoding (r, s).

    • 'ieee-p1363':IEEE-P1363 中提议的签名格式 r || s

      ¥'ieee-p1363': Signature format r || s as proposed in IEEE-P1363.

  • padding <integer> RSA 的可选填充值,以下之一:

    ¥padding <integer> Optional padding value for RSA, one of the following:

    • crypto.constants.RSA_PKCS1_PADDING(默认)

      ¥crypto.constants.RSA_PKCS1_PADDING (default)

    • crypto.constants.RSA_PKCS1_PSS_PADDING

    RSA_PKCS1_PSS_PADDING 将使用 MGF1,其散列函数与 RFC 4055 第 3.1 节中指定的消息签名相同。

    ¥RSA_PKCS1_PSS_PADDING will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055.

  • saltLength <integer> 填充为 RSA_PKCS1_PSS_PADDING 时的盐长度。特殊值 crypto.constants.RSA_PSS_SALTLEN_DIGEST 将盐长度设置为摘要大小,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN(默认值)将其设置为最大允许值。

    ¥saltLength <integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

如果提供了 callback 函数,则该函数使用 libuv 的线程池。

¥If the callback function is provided this function uses libuv's threadpool.

crypto.subtle#

crypto.webcrypto.subtle 的便捷别名。

¥A convenient alias for crypto.webcrypto.subtle.

crypto.timingSafeEqual(a, b)#

此函数使用恒定时间算法比较表示给定 ArrayBufferTypedArrayDataView 实例的底层字节。

¥This function compares the underlying bytes that represent the given ArrayBuffer, TypedArray, or DataView instances using a constant-time algorithm.

此函数不会泄露允许攻击者猜测其中一个值的计时信息。这适用于比较 HMAC 摘要或秘密值,如身份验证 cookie 或 能力网址

¥This function does not leak timing information that would allow an attacker to guess one of the values. This is suitable for comparing HMAC digests or secret values like authentication cookies or capability urls.

ab 必须都是 BufferTypedArrayDataView,并且它们的字节长度必须相同。如果 ab 的字节长度不同,则抛出错误。

¥a and b must both be Buffers, TypedArrays, or DataViews, and they must have the same byte length. An error is thrown if a and b have different byte lengths.

如果 ab 中的至少一个是每个条目超过一个字节的 TypedArray,例如 Uint16Array,则将使用平台字节顺序计算结果。

¥If at least one of a and b is a TypedArray with more than one byte per entry, such as Uint16Array, the result will be computed using the platform byte order.

当两个输入均为 Float32ArrayFloat64Array 时,由于浮点数的 IEEE 754 编码,此函数可能会返回意外结果。特别是,x === yObject.is(x, y) 都不意味着两个浮点数 xy 的字节表示是相等的。

¥When both of the inputs are Float32Arrays or Float64Arrays, this function might return unexpected results due to IEEE 754 encoding of floating-point numbers. In particular, neither x === y nor Object.is(x, y) implies that the byte representations of two floating-point numbers x and y are equal.

使用 crypto.timingSafeEqual 并不能保证周围的代码是时序安全的。应注意确保周围的代码不会引入时序漏洞。

¥Use of crypto.timingSafeEqual does not guarantee that the surrounding code is timing-safe. Care should be taken to ensure that the surrounding code does not introduce timing vulnerabilities.

crypto.verify(algorithm, data, key, signature[, callback])#

使用给定的密钥和算法验证 data 的给定签名。如果 algorithmnullundefined,则算法取决于密钥类型(尤其是 Ed25519 和 Ed448)。

¥Verifies the given signature for data using the given key and algorithm. If algorithm is null or undefined, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448).

如果 key 不是 KeyObject,则此函数的行为就像将 key 传给 crypto.createPublicKey() 一样。如果是对象,则可以传入以下额外属性:

¥If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPublicKey(). If it is an object, the following additional properties can be passed:

  • dsaEncoding <string> 对于 DSA 和 ECDSA,此选项指定签名的格式。它可以是以下之一:

    ¥dsaEncoding <string> For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:

    • 'der'(默认):DER 编码的 ASN.1 签名结构编码 (r, s)

      ¥'der' (default): DER-encoded ASN.1 signature structure encoding (r, s).

    • 'ieee-p1363':IEEE-P1363 中提议的签名格式 r || s

      ¥'ieee-p1363': Signature format r || s as proposed in IEEE-P1363.

  • padding <integer> RSA 的可选填充值,以下之一:

    ¥padding <integer> Optional padding value for RSA, one of the following:

    • crypto.constants.RSA_PKCS1_PADDING(默认)

      ¥crypto.constants.RSA_PKCS1_PADDING (default)

    • crypto.constants.RSA_PKCS1_PSS_PADDING

    RSA_PKCS1_PSS_PADDING 将使用 MGF1,其散列函数与 RFC 4055 第 3.1 节中指定的消息签名相同。

    ¥RSA_PKCS1_PSS_PADDING will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of RFC 4055.

  • saltLength <integer> 填充为 RSA_PKCS1_PSS_PADDING 时的盐长度。特殊值 crypto.constants.RSA_PSS_SALTLEN_DIGEST 将盐长度设置为摘要大小,crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN(默认值)将其设置为最大允许值。

    ¥saltLength <integer> Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

signature 参数是先前为 data 计算的签名。

¥The signature argument is the previously calculated signature for the data.

因为公钥可以从私钥派生出来,所以可以为 key 传入私钥或公钥。

¥Because public keys can be derived from private keys, a private key or a public key may be passed for key.

如果提供了 callback 函数,则该函数使用 libuv 的线程池。

¥If the callback function is provided this function uses libuv's threadpool.

crypto.webcrypto#

类型:<Crypto> Web Crypto API 标准的实现。

¥Type: <Crypto> An implementation of the Web Crypto API standard.

有关详细信息,请参见 网络加密 API 文档

¥See the Web Crypto API documentation for details.

注意事项#

¥Notes

使用字符串作为加密 API 的输入#

¥Using strings as inputs to cryptographic APIs

由于历史原因,Node.js 提供的许多加密 API 都接受字符串作为输入,其中底层加密算法处理字节序列。这些实例包括明文、密文、对称密钥、初始化向量、密码、盐、认证标签和额外的认证数据。

¥For historical reasons, many cryptographic APIs provided by Node.js accept strings as inputs where the underlying cryptographic algorithm works on byte sequences. These instances include plaintexts, ciphertexts, symmetric keys, initialization vectors, passphrases, salts, authentication tags, and additional authenticated data.

将字符串传给加密 API 时,请考虑以下因素。

¥When passing strings to cryptographic APIs, consider the following factors.

  • 并非所有字节序列都是有效的 UTF-8 字符串。因此,当从字符串中导出长度为 n 的字节序列时,其熵通常低于随机或伪随机 n 字节序列的熵。例如,没有 UTF-8 字符串将导致字节序列 c0 af。秘密密钥应该几乎完全是随机或伪随机字节序列。

    ¥Not all byte sequences are valid UTF-8 strings. Therefore, when a byte sequence of length n is derived from a string, its entropy is generally lower than the entropy of a random or pseudorandom n byte sequence. For example, no UTF-8 string will result in the byte sequence c0 af. Secret keys should almost exclusively be random or pseudorandom byte sequences.

  • 同样,在将随机或伪随机字节序列转换为 UTF-8 字符串时,不代表有效代码点的子序列可能会被 Unicode 替换字符 (U+FFFD) 替换。因此,生成的 Unicode 字符串的字节表示可能不等于创建字符串的字节序列。

    ¥Similarly, when converting random or pseudorandom byte sequences to UTF-8 strings, subsequences that do not represent valid code points may be replaced by the Unicode replacement character (U+FFFD). The byte representation of the resulting Unicode string may, therefore, not be equal to the byte sequence that the string was created from.

    const original = [0xc0, 0xaf];
    const bytesAsString = Buffer.from(original).toString('utf8');
    const stringAsBytes = Buffer.from(bytesAsString, 'utf8');
    console.log(stringAsBytes);
    // Prints '<Buffer ef bf bd ef bf bd>'. 

    密码、散列函数、签名算法和密钥派生函数的输出是伪随机字节序列,不应用作 Unicode 字符串。

    ¥The outputs of ciphers, hash functions, signature algorithms, and key derivation functions are pseudorandom byte sequences and should not be used as Unicode strings.

  • 从用户输入中获取字符串时,某些 Unicode 字符可以用多种等效方式表示,从而产生不同的字节序列。例如,将用户密码传递给密钥派生函数(例如 PBKDF2 或 scrypt)时,密钥派生函数的结果取决于字符串是使用组合字符还是分解字符。Node.js 不会规范化字符表示。在将用户输入传给加密 API 之前,开发者应考虑在用户输入上使用 String.prototype.normalize()

    ¥When strings are obtained from user input, some Unicode characters can be represented in multiple equivalent ways that result in different byte sequences. For example, when passing a user passphrase to a key derivation function, such as PBKDF2 or scrypt, the result of the key derivation function depends on whether the string uses composed or decomposed characters. Node.js does not normalize character representations. Developers should consider using String.prototype.normalize() on user inputs before passing them to cryptographic APIs.

旧版流 API(Node.js 0.10 之前)#

¥Legacy streams API (prior to Node.js 0.10)

加密模块是在 Node.js 出现统一的流 API 概念之前添加的,在 Buffer 对象用于处理二进制数据之前。因此,许多 crypto 类具有通常在实现 API 的其他 Node.js 类(例如 update()final()digest())上找不到的方法。此外,许多方法默认接受并返回 'latin1' 编码字符串,而不是 Buffer。此默认值在 Node.js v0.8 之后更改为默认使用 Buffer 对象。

¥The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were Buffer objects for handling binary data. As such, many crypto classes have methods not typically found on other Node.js classes that implement the streams API (e.g. update(), final(), or digest()). Also, many methods accepted and returned 'latin1' encoded strings by default rather than Buffers. This default was changed after Node.js v0.8 to use Buffer objects by default instead.

支持弱算法或受损算法#

¥Support for weak or compromised algorithms

node:crypto 模块仍然支持一些已经被泄露的算法,不建议使用。API 还允许使用对于安全使用来说太弱的小密钥大小的密码和散列。

¥The node:crypto module still supports some algorithms which are already compromised and are not recommended for use. The API also allows the use of ciphers and hashes with a small key size that are too weak for safe use.

用户应根据自己的安全要求对选择加密算法和密钥大小负全部责任。

¥Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements.

基于 NIST SP 800-131A 的建议:

¥Based on the recommendations of NIST SP 800-131A:

  • MD5 和 SHA-1 在需要抗冲突性(例如数字签名)的情况下不再被接受。

    ¥MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures.

  • RSA、DSA 和 DH 算法使用的密钥建议至少 2048 位,ECDSA 和 ECDH 的曲线至少 224 位,才能安全使用几年。

    ¥The key used with RSA, DSA, and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years.

  • modp1modp2modp5 的 DH 组密钥长度小于 2048 位,不推荐使用。

    ¥The DH groups of modp1, modp2 and modp5 have a key size smaller than 2048 bits and are not recommended.

有关其他建议和详细信息,请参阅参考资料。

¥See the reference for other recommendations and details.

一些已知弱点且在实践中几乎没有相关性的算法只能通过 旧版提供器 获得,默认情况下不启用。

¥Some algorithms that have known weaknesses and are of little relevance in practice are only available through the legacy provider, which is not enabled by default.

CCM 模式#

¥CCM mode

CCM 是受支持的 AEAD 算法 之一。使用此模式的应用在使用密码 API 时必须遵守某些限制:

¥CCM is one of the supported AEAD algorithms. Applications which use this mode must adhere to certain restrictions when using the cipher API:

  • 身份验证标签长度必须在密码创建期间通过设置 authTagLength 选项指定,并且必须是 4、6、8、10、12、14 或 16 字节之一。

    ¥The authentication tag length must be specified during cipher creation by setting the authTagLength option and must be one of 4, 6, 8, 10, 12, 14 or 16 bytes.

  • 初始化向量 (nonce) N 的长度必须介于 7 到 13 个字节 (7 ≤ N ≤ 13) 之间。

    ¥The length of the initialization vector (nonce) N must be between 7 and 13 bytes (7 ≤ N ≤ 13).

  • 明文的长度限制为 2 ** (8 * (15 - N)) 个字节。

    ¥The length of the plaintext is limited to 2 ** (8 * (15 - N)) bytes.

  • 解密时,必须在调用 update() 之前通过 setAuthTag() 设置认证标签。否则,解密将失败,final() 将按照 RFC 3610 的第 2.6 节抛出错误。

    ¥When decrypting, the authentication tag must be set via setAuthTag() before calling update(). Otherwise, decryption will fail and final() will throw an error in compliance with section 2.6 of RFC 3610.

  • 在 CCM 模式下使用 write(data)end(data)pipe() 等流方法可能会失败,因为 CCM 无法处理每个实例的多个数据块。

    ¥Using stream methods such as write(data), end(data) or pipe() in CCM mode might fail as CCM cannot handle more than one chunk of data per instance.

  • 当传入额外的认证数据 (AAD) 时,必须通过 plaintextLength 选项将实际消息的长度(以字节为单位)传递给 setAAD()。许多加密库在密文中包含认证标签,这意味着它们产生长度为 plaintextLength + authTagLength 的密文。Node.js 不包含认证标签,所以密文长度始终为 plaintextLength。如果没有使用 AAD,则这不是必需的。

    ¥When passing additional authenticated data (AAD), the length of the actual message in bytes must be passed to setAAD() via the plaintextLength option. Many crypto libraries include the authentication tag in the ciphertext, which means that they produce ciphertexts of the length plaintextLength + authTagLength. Node.js does not include the authentication tag, so the ciphertext length is always plaintextLength. This is not necessary if no AAD is used.

  • 由于 CCM 一次处理整个消息,因此必须恰好调用 update() 一次。

    ¥As CCM processes the whole message at once, update() must be called exactly once.

  • 即使调用 update() 足以加密/解密消息,应用也必须调用 final() 来计算或验证身份验证标记。

    ¥Even though calling update() is sufficient to encrypt/decrypt the message, applications must call final() to compute or verify the authentication tag.

import { Buffer } from 'node:buffer';
const {
  createCipheriv,
  createDecipheriv,
  randomBytes,
} = await import('node:crypto');

const key = 'keykeykeykeykeykeykeykey';
const nonce = randomBytes(12);

const aad = Buffer.from('0123456789', 'hex');

const cipher = createCipheriv('aes-192-ccm', key, nonce, {
  authTagLength: 16,
});
const plaintext = 'Hello world';
cipher.setAAD(aad, {
  plaintextLength: Buffer.byteLength(plaintext),
});
const ciphertext = cipher.update(plaintext, 'utf8');
cipher.final();
const tag = cipher.getAuthTag();

// Now transmit { ciphertext, nonce, tag }.

const decipher = createDecipheriv('aes-192-ccm', key, nonce, {
  authTagLength: 16,
});
decipher.setAuthTag(tag);
decipher.setAAD(aad, {
  plaintextLength: ciphertext.length,
});
const receivedPlaintext = decipher.update(ciphertext, null, 'utf8');

try {
  decipher.final();
} catch (err) {
  throw new Error('Authentication failed!', { cause: err });
}

console.log(receivedPlaintext);const { Buffer } = require('node:buffer');
const {
  createCipheriv,
  createDecipheriv,
  randomBytes,
} = require('node:crypto');

const key = 'keykeykeykeykeykeykeykey';
const nonce = randomBytes(12);

const aad = Buffer.from('0123456789', 'hex');

const cipher = createCipheriv('aes-192-ccm', key, nonce, {
  authTagLength: 16,
});
const plaintext = 'Hello world';
cipher.setAAD(aad, {
  plaintextLength: Buffer.byteLength(plaintext),
});
const ciphertext = cipher.update(plaintext, 'utf8');
cipher.final();
const tag = cipher.getAuthTag();

// Now transmit { ciphertext, nonce, tag }.

const decipher = createDecipheriv('aes-192-ccm', key, nonce, {
  authTagLength: 16,
});
decipher.setAuthTag(tag);
decipher.setAAD(aad, {
  plaintextLength: ciphertext.length,
});
const receivedPlaintext = decipher.update(ciphertext, null, 'utf8');

try {
  decipher.final();
} catch (err) {
  throw new Error('Authentication failed!', { cause: err });
}

console.log(receivedPlaintext);

FIPS 模式#

¥FIPS mode

使用 OpenSSL 3 时,Node.js 在与适当的 OpenSSL 3 提供程序(例如可以按照 OpenSSL 的 FIPS 自述文件 中的说明安装的 来自 OpenSSL 3 的 FIPS 提供程序)一起使用时支持 FIPS 140-2。

¥When using OpenSSL 3, Node.js supports FIPS 140-2 when used with an appropriate OpenSSL 3 provider, such as the FIPS provider from OpenSSL 3 which can be installed by following the instructions in OpenSSL's FIPS README file.

对于 Node.js 中的 FIPS 支持,你需要:

¥For FIPS support in Node.js you will need:

  • 正确安装的 OpenSSL 3 FIPS 提供程序。

    ¥A correctly installed OpenSSL 3 FIPS provider.

  • OpenSSL 3 FIPS 模块配置文件

    ¥An OpenSSL 3 FIPS module configuration file.

  • 引用 FIPS 模块配置文件的 OpenSSL 3 配置文件。

    ¥An OpenSSL 3 configuration file that references the FIPS module configuration file.

Node.js 需要使用指向 FIPS 提供程序的 OpenSSL 配置文件进行配置。示例配置文件如下所示:

¥Node.js will need to be configured with an OpenSSL configuration file that points to the FIPS provider. An example configuration file looks like this:

nodejs_conf = nodejs_init

.include /<absolute path>/fipsmodule.cnf

[nodejs_init]
providers = provider_sect

[provider_sect]
default = default_sect
# The fips section name should match the section name inside the
# included fipsmodule.cnf.
fips = fips_sect

[default_sect]
activate = 1 

其中 fipsmodule.cnf 是 FIPS 提供程序安装步骤生成的 FIPS 模块配置文件:

¥where fipsmodule.cnf is the FIPS module configuration file generated from the FIPS provider installation step:

openssl fipsinstall 

OPENSSL_CONF 环境变量设置为指向你的配置文件,并将 OPENSSL_MODULES 设置为 FIPS 提供程序动态库的位置。例如

¥Set the OPENSSL_CONF environment variable to point to your configuration file and OPENSSL_MODULES to the location of the FIPS provider dynamic library. e.g.

export OPENSSL_CONF=/<path to configuration file>/nodejs.cnf
export OPENSSL_MODULES=/<path to openssl lib>/ossl-modules 

然后可以通过以下方式在 Node.js 中启用 FIPS 模式:

¥FIPS mode can then be enabled in Node.js either by:

  • 使用 --enable-fips--force-fips 命令行标志启动 Node.js。

    ¥Starting Node.js with --enable-fips or --force-fips command line flags.

  • 以编程方式调用 crypto.setFips(true)

    ¥Programmatically calling crypto.setFips(true).

可以选择通过 OpenSSL 配置文件在 Node.js 中启用 FIPS 模式。例如

¥Optionally FIPS mode can be enabled in Node.js via the OpenSSL configuration file. e.g.

nodejs_conf = nodejs_init

.include /<absolute path>/fipsmodule.cnf

[nodejs_init]
providers = provider_sect
alg_section = algorithm_sect

[provider_sect]
default = default_sect
# The fips section name should match the section name inside the
# included fipsmodule.cnf.
fips = fips_sect

[default_sect]
activate = 1

[algorithm_sect]
default_properties = fips=yes 

加密常量#

¥Crypto constants

crypto.constants 导出的以下常量适用于 node:cryptonode:tlsnode:https 模块的各种用途,并且通常特定于 OpenSSL。

¥The following constants exported by crypto.constants apply to various uses of the node:crypto, node:tls, and node:https modules and are generally specific to OpenSSL.

OpenSSL 选项#

¥OpenSSL options

有关详细信息,请参见 SSL OP 标志列表

¥See the list of SSL OP Flags for details.

常量 描述
SSL_OP_ALL 在 OpenSSL 中应用多个错误解决方法。详细信息请参见 https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html
SSL_OP_ALLOW_NO_DHE_KEX 指示 OpenSSL 允许 TLS v1.3 的非基于 [EC]DHE 的密钥交换模式
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION 允许 OpenSSL 与未打补丁的客户端或服务器之间进行传统的不安全重新协商。参见 https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html
SSL_OP_CIPHER_SERVER_PREFERENCE 选择密码时尝试使用服务器的首选项而不是客户端的首选项。行为取决于协议版本。参见 https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html
SSL_OP_CISCO_ANYCONNECT 指示 OpenSSL 使用 Cisco 的 "speshul" 版本的 DTLS_BAD_VER。
SSL_OP_COOKIE_EXCHANGE 指示 OpenSSL 打开 cookie 交换。
SSL_OP_CRYPTOPRO_TLSEXT_BUG 指示 OpenSSL 从早期版本的 cryptopro 草案中添加 server-hello 扩展。
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS 指示 OpenSSL 禁用在 OpenSSL 0.9.6d 中添加的 SSL 3.0/TLS 1.0 漏洞解决方法。
SSL_OP_LEGACY_SERVER_CONNECT 允许初始连接到不支持 RI 的服务器。
SSL_OP_NO_COMPRESSION 指示 OpenSSL 禁用对 SSL/TLS 压缩的支持。
SSL_OP_NO_ENCRYPT_THEN_MAC 指示 OpenSSL 禁用 encrypt-then-MAC。
SSL_OP_NO_QUERY_MTU
SSL_OP_NO_RENEGOTIATION 指示 OpenSSL 禁用重新协商。
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION 指示 OpenSSL 在执行重新协商时始终启动新会话。
SSL_OP_NO_SSLv2 指示 OpenSSL 关闭 SSL v2
SSL_OP_NO_SSLv3 指示 OpenSSL 关闭 SSL v3
SSL_OP_NO_TICKET 指示 OpenSSL 禁用 RFC4507bis 票证的使用。
SSL_OP_NO_TLSv1 指示 OpenSSL 关闭 TLS v1
SSL_OP_NO_TLSv1_1 指示 OpenSSL 关闭 TLS v1.1
SSL_OP_NO_TLSv1_2 指示 OpenSSL 关闭 TLS v1.2
SSL_OP_NO_TLSv1_3 指示 OpenSSL 关闭 TLS v1.3
SSL_OP_PRIORITIZE_CHACHA 当客户端这样做时,指示 OpenSSL 服务器优先考虑 ChaCha20-Poly1305。如果未启用 SSL_OP_CIPHER_SERVER_PREFERENCE,则此选项无效。
SSL_OP_TLS_ROLLBACK_BUG 指示 OpenSSL 禁用版本回滚攻击检测。

OpenSSL 引擎常量#

¥OpenSSL engine constants

常量 描述
ENGINE_METHOD_RSA 将引擎使用限制为 RSA
ENGINE_METHOD_DSA 将引擎使用限制为 DSA
ENGINE_METHOD_DH 将引擎使用限制为 DH
ENGINE_METHOD_RAND 将引擎使用限制为 RAND
ENGINE_METHOD_EC 将引擎使用限制为 EC
ENGINE_METHOD_CIPHERS 将引擎使用限制为 CIPHERS
ENGINE_METHOD_DIGESTS 将引擎使用限制为 DIGESTS
ENGINE_METHOD_PKEY_METHS 将引擎使用限制为 PKEY_METHDS
ENGINE_METHOD_PKEY_ASN1_METHS 将引擎使用限制为 PKEY_ASN1_METHS
ENGINE_METHOD_ALL
ENGINE_METHOD_NONE

其他 OpenSSL 常量#

¥Other OpenSSL constants

常量 描述
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
RSA_PKCS1_PADDING
RSA_SSLV23_PADDING
RSA_NO_PADDING
RSA_PKCS1_OAEP_PADDING
RSA_X931_PADDING
RSA_PKCS1_PSS_PADDING
RSA_PSS_SALTLEN_DIGEST 签名或验证时将 RSA_PKCS1_PSS_PADDING 的盐长度设置为摘要大小。
RSA_PSS_SALTLEN_MAX_SIGN RSA_PKCS1_PSS_PADDING 的盐长度设置为签名数据时允许的最大值。
RSA_PSS_SALTLEN_AUTO 导致验证签名时自动确定 RSA_PKCS1_PSS_PADDING 的盐长度。
POINT_CONVERSION_COMPRESSED
POINT_CONVERSION_UNCOMPRESSED
POINT_CONVERSION_HYBRID

Node.js 加密常量#

¥Node.js crypto constants

常量 描述
defaultCoreCipherList 指定 Node.js 使用的内置默认密码列表。
defaultCipherList 指定当前 Node.js 进程使用的活动默认密码列表。